AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances of Nanotechnology in the Stem Cells Research and Development

Jiajia JiJing RuanDaxiang Cui( )
Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai200240, China
Show Author Information

Abstract

In decades, stem cell nanotechnology has become a new promising field for stem cell research and development. So, stem cell nanotechnology has attracted lots of researchers’ attention and made great progress. The unique properties of nanomaterials and nanostructures which applied in the fundamental research of stem cell-based therapies have been recognized. Nanomaterials and nanotechnology have been highlighted as promising candidates for efficient control over proliferation and differentiation of stem cells, revolutionizing the treatment of neurodegenerative disorders, neuroprotection in traumatic brain injury, improving the osteospecific differentiation and function, tissue engineering scaffold, dental implant application, drug delivery, gene therapy and cell imaging or tracking. Here we summarize the main progress in this field, explore the application prospects in injuries, diseases, regenerative medicine, etc. and discuss the methods and challenges with the aim of improving application of nanotechnology in the stem cell research and development.

References

[1]

Wang Z, Ruan J, Cui D. Advances and Prospect of Nanotechnology in Stem Cells. Nanoscale Research Letter 2009; 4: 593-605.doi: 10.1007/s11671-009-9292-z

[2]

Weissman I L. Stem cells-scientific, medical and political issues. N Eng J Med 2002; 346(8): 1576.doi: 10.1056/NEJMsb020693

[3]

Solanki A, Kim J D, Lee K B. Nanomaterials for biomedical applications. Nanomedicine 2008; 3(4): 567-578.doi: 10.2217/17435889.3.4.567

[4]

Aurich I, Mueller L, Aurich H et al. Functional integration of human mesenchymal stem cell-derived hepatocytes into mouse livers.Gut 2007; 56(2): 405-415.doi: 10.1136/gut.2005.090050

[5]

Xu W R, Zhang X, Qian H et al.Mesenchymal stem cells from adult human bone marrow differentiation into a cardiomyocyte phenotype in vitro. Experimental biology and medicine 2002; 229(3): 623-625.

[6]

Oswald J, Boxberger S, Jorgensen B et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem cells 2004; 22(2): 377-379.doi: 10.1634/stemcells.22-3-377

[7]

Gallegos R P, Bolman R M, Card Ⅲ. Stem cell induced regeneration of myocardium. Surg. Adult. 2008; 3(6): 1657-1668.

[8]

Stuart H, Morrison O S et al. Biomedicine : Stem-cell competition. Nature 2002; 418: 25. doi: 10.1038/418025a

[9]

Jiang Y H, Jahagirdar B, Reinhardt R L et al.. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(1): 41-42.doi: 10.1038/nature00870

[10]

Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154-157.doi: 10.1038/292154a0

[11]

Heino T J, Hentunen T A. Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Current stem cell research & therapy 2008; 2(1): 131-137.doi: 10.2174/157488808784223032

[12]

Yu J, Vodyanik M A, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-1921.doi: 10.1126/science.1151526

[13]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 : 663-667.doi: 10.1016/j.cell.2006.07.024

[14]

Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2007; 131: 861-863. doi: 10.1016/j.cell.2007.11.019

[15]

Zhao X, Li W, Lv Z, Liu L, Tong M et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461: 86-88.doi: 10.1038/nature08267

[16]

Metcalf D. Concise Review: Hematopoietic stem cells and tissue stem cells: Current concepts and unanswered questions. Stem Cells 2007; 25: 2390-2394.doi: 10.1634/stemcells.2007-0544

[17]

Liu S V. iPS Cells: A More Critical Review. Stem Cells and Development. Stem Cells and Development 2008; 17: 391-394.doi: 10.1089/scd.2008.0062

[18]

Liu S V. Are iPS cells really indistinguishable from ES cells? Logical Biology 2007; 7(1):63-65

[19]

Pera M. Stem cells: A new year and a new era. Nature 2008; 451:135. doi: 10.1038/451135a

[20]

Cui D. Advances and prospects on biomolecules functionalized carbon nanotubes. Journal of Nanoscienceand Nanotechnology 2007; 7: 1298-1314.doi: 10.1166/jnn.2007.654

[21]

Pan B, Cui D, Ozkan C S et al. DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions. Journal of Physical Chemistry C. 2007; 111: 12572-12576. doi: 10.1021/jp072335+

[22]

Pan B, Cui D, Xu P et al. Design of dendrimer modified carbon nanotubes for gene delivery. Chinese Journal of Cancer Reasearch 2007; 19:1-6.doi: 10.1007/s11670-007-0001-0

[23]

Ao L, Gao F, Pan B, He R, Cui D. Fluoroimmunoassay for Antigen Based on Fluorescence Quenching Signal of Gold Nanoparticles. Analytical Chemistry 2006; 78 : 1104-1107.doi: 10.1021/ac05132-3m

[24]

Cui D, Pan B, Zhang H et al. Self-assembly of CNTs and Quantum dots for ultrasensitive DNA and antigen detction. Analytical Chemistry 2008; 80 : 7996-8001.doi: 10.1021/ac800992m

[25]

Washburn N R, Yamada K M, Simon C G et al. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 2004; 25 : 1215-1224.doi: 10.1016/j.biomaterials.2003.08.043

[26]

Zhang L, Webster T. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009; 4: 66-80.doi: 10.1056/NEJMsb020693

[27]

Clark P, Connolly P, Curtis A S et al. Cell guidance by ultrafine topography in vitro. J. Cell Sci. 1991; 99 (1): 73-77.

[28]

Jing Y, Moore L R, Williams P S et al. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnology and bioengineering 2007; 96: 1139-1154.doi: 10.1002/bit.21202

[29]

Ohyabu Y, Kaul Z, Yoshioka T et al. Stable and NonDisruptive In Vitro/In Vivo Labeling of Mesenchymal Stem Cells by Internalizing Quantum Dots. Hum Gene Ther. 2009; 20: 217-224.doi: 10.1089/hum.2008.100

[30]

Cui D, Zhang H, Wang Z, Toru A, Tetsuya O. Effects of dendrimer-functionalized mult-walled carbon nanotubes on murine embryonic stem cells. ECS Transactions 2008; 13(1): 111-113.doi: 10.1149/1.2998536

[31]

Shi D, Wang W, Lian J, Liu G K, Dong Z Y, Wang L M, Ewing R C. Luminescent Carbon Nanotubes. Adv. Mat. 2006;18: 189-191.doi: 10.1002/adma.200501680

[32]

Biggs M J P, Richards R G, Gadegaard N, Wilkinson C D W, Oreffo R O C, Dalby M J. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+enriched skeletal stem cells. Biomaterials 2009; 30: 5094-5103.doi: 10.1016/j.biomaterials.2009.05.049

[33]

Tambralli A, Blakeney B, Anderson J, Kushwaha M, Andukuri A, Dean D, Jun H. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 2009; 1: 025001.

[34]

You X, He R, Gao F, Shao J, Pan B, Cui D. Hydrophilic high-luminescent magnetic nanocomposites. Nanotechno logy 2007; 18: 035701.doi: 10.1088/0957-4484/18/3/035701

[35]

Kim D H, Lee S H, Kim K N, Kim K M, Shim I B, Lee Y K. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. Journal of Magnetism and Magnetic Materials 2005; 293: 287-292.doi: 10.1016/j.jmmm.2005.02.07

[36]

Dong-Hyun K, Se-Ho L, Kyoung-Nam K et al. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J Magn Magn Mater 293: 287-292.doi: 10.1016/j.jmmm.2005.02.078

[37]

Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T. Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System. Cancer Research 2007; 67: 17.doi: 10.1158/0008-5472.CAN-06-4762

[38]

Ito A, Ino K, Kobayashi T, Honda H. RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 2005; 26: 6185-6193.doi: 10.1016/j.biomaterials.2005.03.039

[39]

Sincai M, Ganga D, Ganga M Argherie D, Bica D. Antitumor effect of magnetite nanoparticlesin cat mammary adenocarcinoma. J Magn Magn Mater 2005; 293(2): 438-41.doi: 10.1016/j.jmmm.2005.02.074

[40]

Morishita M, Nakagami H, Morishita R et al. Magnetic nanoparticleswith surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334: 1121-1126.doi: 10.1016/j.bbrc.2005.06.204

[41]

Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 2005; 4: 435-446.doi: 10.1038/nmat1390

[42]

Sykova E, Jendelova P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegenerative Diseases 2006; 3: 62-67.doi: 10.1159/000092095

[43]

Yang D, Cui D. Advances and Prospects of Gold Nanorods. Chem. Asian J. 2008; 3: 2010-2020.doi: 10.1002/asia.200800195

[44]

Bakalova R, Zhelev Z, Aoki I, Kanno I. Designing quantum-dot probes. Nature Photonics 2007; 1(9): 487-488.doi: 10.1038/nphoton.2007.150

[45]

Hoshino A, Fujioka K, Manabe N, Yamaya S Goto Y, Yasuhara M, Yamamoto K. Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiology and Immunology 2005; 49: 461-470.

[46]

Huang X Y, Li L, Qian H F, Dong C Q, Ren C J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew. Chem. Int. Ed. 2006; 45 : 5140-5143. doi: 10.1002/anie.200601196

[47]

Han M, Gao X, Su J Z, Nie S M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 2001; 19 : 631-635. doi: 10.1038/90228

[48]

Sykova E, Jendelova P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis. 2006; 3: 62-67. doi: 10.1159/000092095

[49]

Maxwell D J, Bonde J, Hess D A et al. Fluorophore Conjugated Iron Oxide Nanoparticle Labeling and Analysis of Engrafting Human Hematopoietic Stem Cells. Stem cells 2008; 26: 517-524.doi: 10.1634/stemcells.2007-0016

[50]

Berry C C, Harianawalw H, Loebus J, Oreffo R O C, de la Fuente J. Enhancement of Human Bone Marrow Cell Uptake of Quantum Dots using Tat Peptide. Current Nanoscience 2009; 5: 390-395.

[51]

Coyne T M, Marcus A J, Woodbury D et al. Marrow Stromal Cells Transplanted to the Adult Brain are Rejected by an Inflammatory Response and Transfer Donor Labels to Host Neurons and Glia. Stem cells 2006; 24 : 2483-2492.doi: 10.1634/stemcells.2006-0174

[52]

Jendelová P, Herynek V, Urdzíková L et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. Journal of neuroscience research 2004; 76: 232-243. doi: 10.1002/jnr.20041

[53]

Coyne T M, Marcus A J, Reynolds K et al. Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation. 2007;84(11):1507-1516

[54]

Ju S, Teng G, Zhang Y et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 2006; 24 : 611-617. doi: 10.1016/j.mri.2005.12.017

[55]

Terrovitis J, Stuber M, Youssef A et al. Magnetic Resonance Imaging Overestimates Ferumoxide-Labeled Stem Cell Survival after Transplantation in the Heart. Circulation. 2008; 117 : 1555-1562. doi: 10.1161/CIRCULATIONAHA.107.732073

[56]

Zuzana B, Daniel J, Klara Z et al. Labeling of Pancreatic Islets With Iron Oxide Nanoparticles for In Vivo Detection With Magnetic Resonance. Transplantation 2008; 85: 155-159.

[57]

Castano H, O”Rear E A, McFetridge P S et al. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Macromol Biosci.2004; 4: 785-794. doi: 10.1002/mabi.200300123

[58]

San Román J A, Fernández-Avilés F. The role of noninvasive imaging techniques in the assessment of stem cell therapy after acute myocardial infarction. Nature Clinical Practice Cardiovascular Medicine 2006; 3 : S38-S41.doi: 10.1038/ncpcardio0448

[59]

Evgenov N V, Medarova Z, Pratt J et al. In Vivo Imaging of Immune Rejection in Transplanted Pancreatic Islets. Diabetes 2006; 55: 2419-2428.doi: 10.2337/db06-0484

[60]

He R, You X, Shao J, Gao F, Pan B, Cui D. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 2007; 18 : 315-601.doi: 10.1088/0957-4484/18/31/315601

[61]

Noh M S, Jun B H, Kim S, Kang H, Woo M, Minai-Tehrani A, Kim J E, Kim J, Park J, Lim H, Park S C, Hyeon T, Kim Y K, Jeong D H, Lee Y S, Cho M. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials 2009; 30: 3915-25.

[62]

Cui D, Zhang H, Wang Z, Asahi T, Osaka T. Effects of Dendrimer-Functionalized Multi-walled Carbon Nanotubes on Murine stem cells. ECS Transactions 2008; 13: 111-116.

[63]

Park I H, Lerou P H, Zhao R, Huo H, Daley G Q. Generation of human-induced pluripotent stem cells. Nature Protoc. 2008; 3 : 1180-1186. doi: 10.1038/nprot.2008.92

[64]

Ruiz-Cabello J, Walczak P, Kedziorek D, Chacko V, Schmieder A, Wickline S, Lanza G, Bulte J. In Vivo "Hot Spot" MR Imaging of Neural Stem Cells Using Fluorinated Nanoparticles. Magnetic Resonance in Medicine 2008; 60: 1506-1511.

[65]

Liu K, Wang C, Cheng C, Chao J. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 2009; 30: 4249-59.

[66]

Solanki A, Kim J D, Lee K B. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine, 2008; 3: 567-578.

[67]

Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nature Biotechnol. 2008; 26: 739-740.doi: 10.1038/nbt0708-739

[68]

Wood S A, Allen N D, Rossant J, Auerbach A, Nagy A. Non-injection methods for the production of embryonic stem cell-embryo chimeras. Nature 1993; 365 : 87-89. doi: 10.1038/365087a0

[69]

Cui D, Tian F, Coyer C R et al. Effects of as-myc conjugated single-walled carbon nanotubes on HL-60 cells. J. Nanosci Nanotechnol. 2007; 7 : 1639-1646. doi: 10.1166/jnn.2007.348

[70]

Kam SW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 2006; 45: 577-581.doi: 10.1002/anie.200503389

[71]
Jimenez-Contreras R, Chief Editor. Nanotechnology Research Developments, Chapter one, Pan, B. and Cui, D. Advance and application prospect of Dendrimers. Springer Press.2008; 7-95.
[72]

Lee J W, Kim B K, Kim H, Han S C, Shin W S, Jin S H. Macromolecules 2006; 39: 2418-2420.

[73]

Pan B, Cui D, Shen Y, Ozkan C S, Gao F, He R, Li Q, Xu P, Huang T. Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System. Cancer Research 2007; 67 : 8156-8163 doi: 10.1158/0008-5472.CAN-06-4762

[74]

Pan B, Cui D, Xu P, Huang T, Li Q, He R, Gao F. Enhancement of cellular uptake of dendrimer-modified Quantum dots. J. Biomed. Pharm. Eng. 2007; 1: 13-16.

[75]

Han S W, Nakamura C, Obataya I et al. A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron. 2005; 20 : 2120–2125. doi: 10.1016/j.bios.2004.08.023

[76]

Bharali D, Klejbo, I, Stachowial E K et al. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA. 2005; 102 : 11539-11544. doi: 10.1073/pnas.0504926102

[77]

Obataya I, Nakamura C, Han S W et al. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 2005; 5 : 27-30. doi: 10.1021/nl0485399

[78]

Han S W, Nakamura C, Obataya I et al. A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron.2005; 20: 2120-2125.

[79]

Green J J, Zhou B Y, Mitalipova M M, Beard C, Langer R, Jaenisch R, Anderson D. Nano Letters 2008; 8: 3126-3130.doi: 10.1021/nl8012665

[80]

Soenen SJH, Hodenius M, De Cuyper M. Magnet oliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine 2009; 4: 177-191.doi: 10.2217/17435889.4.2.177

[81]

Warheit D B, Laurence B R, Reed K L, Roach D H, Reynolds G A, Webb T R. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004; 77: 117-125.doi: 10.1093/toxsci/kfg228

[82]

Cui D, Tian F, Kong Y, Igor T, Gao H. Effect of single wall carbon nanotubes on polymerase chain reaction. Nanotechnology, 2004; 15: 154-158.doi: 10.1088/0957-4484/15/1/030

[83]

Gao H, Kong Y, Cui D, Ozkan C S. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett.2003; 3: 471-473.doi: 10.1021/nl025967a

[84]

Guo Z J, Sadler P J, Tsang S C. Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 1998; 10: 701-703.doi: 10.1002/(SICI)1521-4095(199806)10:9<701::AID-ADMA701>3.0.CO;2-4

[85]

Cui D, Ozkan C S, Ravindran S, Kong Y, Gao H. Encapsulation of Pt-labelled DNA molecules inside carbon nanotubes. Mechanics and Chemistry of Biological System.2004; 1: 113-121.

[86]

Hafner J H, Cheung C L, Woolley A T, Lieber C M. Structural and functional imaging with carbon nanotube AFM probes. Progress in Biophysics & Molecular Biology 2001; 77: 73-110.doi: 10.1016/S0079-6107(01)00011-6

[87]

Liu Y, Wu D, Zhang W, Jiang X, He C, Chung T S, Goh S H, Leong K W. Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA. Angew. Chem. Int. Ed. 2005; 44: 4782-4785.doi: 10.1002/anie.200500042

[88]

Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand J, Prato M, Kostarelos K, Bianco A. Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew. Chem. Int. Ed. 2004; 43: 5242.doi: 10.1002/anie.200460437

[89]

Lu Q, Moore J M, Huang G, Mount A S, Rao A M, Larcom, L L, Ke P C. RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Lett. 2004; 4: 2473-2475.

[90]

Kam N W S, Dai H. Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality.J. Am. Chem. Soc. 2005; 127: 6021-6022.doi: 10.1021/ja050062v

[91]

Kam N W S, Jessop T C, Wender P A, Dai H. Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. Am Chem. Soc. 2004; 126: 6850.doi: 10.1021/ja0486059

[92]

Cui D, Tian F, Coyer S R, Wang J, Gao F, He R, Pan B, Zhang Y. Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J. Nanoscience & Nanotechnology 2007; 7: 1639-1642.doi: 10.1166/jnn.2007.348

[93]

Cui D, Tian F, Ozkan C S, Wang M, Gao H. Effects of single wall carbon nanotubes on HEK293 cells. Toxicology Letter 2005; 155: 77-94.doi: 10.1016/j.toxlet.2004.08.015

[94]

Crouse C A, Maruyama B, Colorado R J, Back T, Barron A R. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition. J Am Chem Soc 2008; 130 : 7946-7954.doi: 10.1021/ja800233b

[95]

Zhou G S, Su Z Y, Cai Y R, Liu Y K et al. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Biomed Mater Eng.2007; 17: 387-395

[96]

Gelain F, Bottai D, Vescovi A et al. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures. PLoS One 2006; 1: 119.doi: 10.1371/journal.pone.0000119

[97]

Lu Y, Chen S C. Micro and nano-fabrication of biodegradable polymers for drug delivery. Advanced drug delivery reviews 2004; 56: 1621-1633.doi: 10.1016/j.addr.2004.05.002

[98]

Gelain F. Novel opportunities and challenges offered by nanobiomaterials in tissue engineering. International Journal of Nanomedicine 2008; 3: 415-424.

[99]

Park S Y, Namgung S, Kim B, Im J, Kim J Y, Sun K, Lee K B, Nam J, Park Y, Hong S. Carbon nanotube monolayer patterns for directed growth of mesenchymal stem cells. Adv. Mater. 2007; 19(2): 2530-2532.doi: 10.1002/adma.200600875

[100]

Dalby M J, Riwhle M O, Johnstone H J H et al. Polymer-demixed nanotopography: Control of fibroblast spreading and proliferation. Tissue Eng. 2002; 8: 1099-1108.doi: 10.1089/107632702320934191

[101]

Adams G B, Chabner K T, Alley I R et al. Stem cell engraftment at the endostelial niche is specified by the calcium-sensing receptor. Nature. 2006; 439: 599-603. doi: 10.1038/nature04247

[102]

Owen G R, Jackson J, Chehroudi B et al. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterial 2005; 26: 7447-7456. doi: 10.1016/j.biomaterials.2005.05.055

[103]

Wilson C J, Richard B E, Clegg E et al. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue engineering 2005; 11: 1-18.doi: 10.1089/ten.2005.11.1

[104]

Haack B, Reboud J, Combe S et al. A “DropChip” cell array for DNA and siRNA transfection combined with drug screening. Nanobiotechnology 2005; 1: 1551-1286.

[105]

Fan Y W, Cui F Z, Hou S P et al. Culture of neural cells on silicon wafers with nano-scale surface topograph. J Neurosci Methods 2002; 120: 17-23.doi: 10.1016/S0165-0270(02)00181-4

[106]

Edgar D, Kenny S, Almond S et al. Topography, stem cell behaviour, and organogenesis. Pediatric surgery international. 2004; 20: 737-740.doi: 10.1007/s00383-004-1288-2

[107]

Teixeira A I, Abrams G A, Bertics P J et al. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 2003; 15:1881-1892.doi: 10.1242/jcs.00383

[108]

Castano H, O”Rear E A, McFetridge P S et al. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Macromol Biosci. 2004; 4: 785-794.doi: 10.1002/mabi.200300123

[109]

Clark P, Connolly P, Curtis A S et al. Cell guidance by ultrafine topography in vitro. J. Cell Sci.1991; 99: 73-77.

[110]

Thorvaldsson A, Stenhamre H, Gatenholm P et al. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 2008; 9: 1044-1049.doi: 10.1021/bm701225a

[111]

Moroni L Schotel R, Hamann D et al. 3D Fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Advanced Functional Materials 2007; 10: 53-60.

[112]

Li Z S, Zhang M Q. Chitosan-alginate as scaffolding material for cartilage tissue engineering. Journal of Biomedical Materials Research Part A. 2008; 74: 485-493.

[113]

Tysseling-Mattiace V M, Sahni V, Niece K L et al. Selfassembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 2008; 28 : 3814-3823.doi: 10.1523/JNEUROSCI.0143-08.2008

[114]

Silva G A, Czeisler C, Niece K L et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303: 1352-1355.doi: 10.1126/science.1093783

[115]

Modi G, Pillay V, Choonara Y, Ndesendo V, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Progress in Neurobiology2009; 88: 272-285.doi: 10.1016/j.pneurobio.2009.05.002

[116]

Bakeine G J, Ban J, Grenci G, Pozzato A, Dal Zilio S, Prasciolu M, Businaro L, Tormen M, Ruaro M. Design, fabrication and evaluation of nanoscale surface topography as a tool in directing differentiation and organisation of embryonic stem-cell-derived neural precursors. Microelectronic Engineering 2009; 86: 1435-1438.doi: 10.1016/j.mee.2009.01.032

[117]

Jain K K. Neuroprotection in traumatic brain injury. Drug Discovery Today 2009; 13: 1082-1089. doi: 10.1016/j.drudis.2008.09.006

[118]

Xie J, Willerth S M, Li X, Macewan M R, Rader A, Sakiyama-Elbert S E, Xia Y. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009; 30: 354-62.doi: 10.1016/j.biomaterials.2008.09.046

[119]

Orive G, Anitua E, Luis Pedraz J, Emerich D F. Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience 2009; 10: 682-U47. doi: 10.1038/nrn2685

[120]

Kapadia M R, Chow L W, Tsihlis N D et al. Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J Vasc Surg 2008; 47: 173-182.doi: 10.1016/j.jvs.2007.09.005

[121]

Harding S E, Ali N N, Brito-Martins M, Gorelik J. The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. Pharmacol Ther 2007; 113: 341-353.doi: 10.1016/j.pharmthera.2006.08.008

[122]

Spadaccio C, Rainer A, Trombetta M, Vadala G, Chello M, Covino E, Denaro V, Toyoda Y, Genovese J. Poly-l-Lactic Acid/Hydroxyapatite Electrospun Nanocomposites. Induce Chondrogenic Differentiation of Human MSC. Annals of Biomedical Engineering 2009; 37: 1376-1389.

[123]

Aoki K, Usui Y, Narita N, Ogiwara N et al. A thin carbon-fiber web as a scaffold for bone-tissue regeneration. Small 2009; 5: 1540-1546.

[124]

Biggs M J P, Richards R G, Gadegaard N, Wilkinson C D W, Oreffo R O C, Dalby M J. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+enriched skeletal stem cells. Biomaterials 2009; 30: 5094-5103.

[125]

Biggs M J P, Richards R G, Gadegaard N, McMurray R, Affrossman S, Wilkinson C D W, Oreffo R O C, Dalby M J. Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. Journal of Biomedical Materials Research Part A. 2009; 91A: 195-208.

[126]

Biggs M J P, Richards R G, McFarlane S, Wilkinson C D W, Oreffo R O C, Dalby M J. Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves. Journal of The Royal Society Interface 2008; 5: 1231-1242.

[127]

Bianco A, Di Federico E, Moscatelli I, Camaioni A, Armentano I, Campagnolo L, Dottori M, Kenny J M, Siracusa G, Gusmano G. Electrospun poly(epsilon-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: Microstructure, mechanical properties and cell response by murine embryonic stem cells. Materials Science & Engineering C- Materials for Biological Applications 2009; 29: 2063-2071.

[128]

Smith L A, Liu X, Hu J, Ma P X. The influence of threedimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials 2009; 30, 2516-2522. doi: 10.1016/j.biomaterials.2009.01.009

[129]

Variola F, Vetrone F, Richert L, Jedrzejowski P, Yi J, Zalzal S, Clair S, Sarkissian A, Perepichka D, Wuest J, Rosei F, Nanci A. Improving Biocompatibitity of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, Fabrication Methods, and Challenges. Small 2009; 5: 996-1006.

[130]

Huang D M, Hsiao J, Chen Y, Chien L, Yao M, Chen Y, Ko B, Hsu S, Tai L et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009; 30: 3645-51.

[131]

Tambralli A, Blakeney B, Anderson J, Kushwaha M, Andukuri A, Dean D, Jun H. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 2009; 1: 025001

[132]

Yang W, Hsu M, Lin M, Chen Z, Chen L, Huang H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. Journal of Alloys and Compounds 2009; 479: 642-647.

[133]

Heo S J, Kim S E, Wei J, Kim D H, Hyun Y T, Yun H S, Kim H K, Yoon T R, Kim S H, Park S A, Shin J W, Shin J W. In Vitro and Animal Study of Novel Nano-Hydroxyapatite/Poly(epsilon-Caprolactone) Composite Scaffolds Fabricated by Layer Manufacturing Process. Tissue Engineering Part A. 2009; 15: 977-989.

[134]

Elsaesser A, Barnes C, McKerr G, Howard C, Lynch I, Dawson K, Piersma A. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicology and Applied Pharmacology 2009; 240: 108-116.

[135]

Deng X, Chen W, Wang Y, Wu M, Zhang H, Zheng J. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 2009; 20: 115101.

[136]

Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30: 3891-3914.

[137]

Vaijayanthimala V, Tzeng Y, Chang H, Li C. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 2009; 20: 425103.

[138]

Lin H, Ling M, Lin Y. High strength and low friction of a PAA-alginate-silica hydrogel as potential material for artificial soft tissues. Journal of Biomaterials Science, Polymer Edition 2009; 20: 637-652.

[139]

Kittler S, Greulich C, Koeller M, Epple M. Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwissenschaft und Werkstofftechnik 2009; 40: 258-264.

[140]

Low S P, Voelcker N H, Canham L T, Williams K A. The biocompatibility of porous silicon in tissues of the eye. Biomaterials 2009; 30: 2873-2880.

[141]
Daxiang Cui, Chapter 7. Cytotoxicity and potential mechanism of nanomaterials. Nanotoxicology Yuliang Zhao, Hari Singh Nalwa, editor in chief. American Scientific Publishers 2007; 103-111.
Nano Biomedicine and Engineering
Pages 67-89
Cite this article:
Ji J, Ruan J, Cui D. Advances of Nanotechnology in the Stem Cells Research and Development. Nano Biomedicine and Engineering, 2010, 2(1): 67-89. https://doi.org/10.5101/nbe.v2i1.p67-89

239

Views

15

Downloads

3

Crossref

0

Scopus

Altmetrics

Received: 08 January 2010
Accepted: 10 February 2010
Published: 05 March 2010
© 2010 J. Ji et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Return