AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (358.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

QDs-Cavity Approach to Controlled Quantum Teleportation of GHZ-Like State

Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, National Key Laboratory of Micro /Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai,200030, P.R.China
C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook,Stony Brook, NY 11794, USA College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, P.R.China
Show Author Information

Abstract

The experimental scheme for controlled quantum teleportation of tripartite GHZ-like state is presented. With the entanglement generating through the interaction between the quantum dots in microcavities and a single photon, the controlled teleportation can be realized by virtue of Faraday rotation, single photon detection and electron spin orientation measurement. The success probability of the scheme can reach 1 if the cavities are switchable to choice the appropriate Faraday rotation angle. The scheme can be easily generalized to the teleportation of multipartite GHZ-like state.

References

1

Nielsen MA, Knill E and Laflamme R. Complete quantum teleportation using nuclear magnetic resonance. Nature 1998; 396:52-55. doi: 10.1038/23891

2

Awschalom DD, Loss D, and Samarth N. Semicon-ductor Spintronics and Quantum Computing (2002, Springer, New York).

3

Reina JH and Johnson NF. Quantum teleportation in a solid-state system. Phys. Rev. A 2000; 63:012303. doi: 10.1103/PhysRevA.63.012303

4

Mooij JE, Orlando TP, Levitov L, Tian L, van der Wal CH, Lloyd S. Josephson Persistent-Current Qubit. Science 1999; 285:1036. doi: 10.1126/science.285.5430.1036

5

Platzman PM, Dykman MI. Quantum Computing with Electrons Floating on Liquid Helium. Science 1999; 284:1967-1969. doi: 10.1126/science.284.5422.1967

6

Tanamoto T. Quantum gates by coupled asymmetric quantum dots and controlled-NOT-gate operation. Phys. Rev. A 2000; 61:022305. doi: 10.1103/PhysRevA.61.022305

7

Loss D and DiVincenzo DP. Quantum computation with quantum dots. Phys. Rev. A 1998; 57:120-126. doi: 10.1103/PhysRevA.57.120

8

Miranowicz A, Özdemir ŞK, Liu YX, Koashi M, Imoto N and Hirayama Y. Generation of maximum spin entanglement induced by a cavity field in quantum-dot systems. Phys. Rev. A 2002; 65:062321. doi: 10.1103/PhysRevA.65.062321

9

Imamoglu A, Awschalom DD, Burkard G, DiVincenzo DP, Loss D, Sherwin M, and Small A. Quantum Information Processing Using Quantum Dot Spins and Cavity QED. Phys. Rev. Lett. 1999; 83:4204-4207. doi: 10.1103/PhysRevLett.83.4204

10

Burkard G, Loss D and DiVincenzo DP. Coupled quantum dots as quantum gates. Phys. Rev. B 1999; 59:2070-2078. doi: 10.1103/PhysRevB.59.2070

11

Sørensen A and Mølmer K. Quantum Computation with Ions in Thermal Motion. Phys. Rev. Lett. 1999; 82:1971-1974. doi: 10.1103/PhysRevLett.82.1971

12

Song KH and Zhang WJ. Proposal for teleporting an en-tangled coherent state via the dispersive atom-cavity-field interaction. Physics Letters A 2001; 290:214-218.doi: 10.1016/S0375-9601(01)00691-0

13

Obermayer K, Teich WG, and Mahler G. Structural basis of multistationary quantum systems. I. Effective singleparticle dynamics. Phys. Rev. B 1988; 37:8096-8110. doi: 10.1103/PhysRevB.37.8096

14

de Visser RL and Blaauboer M. Deterministic Teleportation of Electrons in a Quantum Dot Nanostructure. Phys. Rev. Lett. 2006; 96:246801. doi: 10.1103/PhysRevLett.96.246801

15

Wang HF and Kais S. Quantum teleportation in one-dimensional quantum dots system. Chemical Physics Letters 2006; 421:338-342. doi: 10.1016/j.cplett.2006.01.093

16

Sauret O, Feinberg D and Martin T. Electron spin teleportation current through a quantum dot array operating in the stationary regime. Phys. Rev. B 2004; 69:035332. doi: 10.1103/PhysRevB.69.035332

17

Leuenberger MN, Flatté ME and Awschalom DD. Teleportation of Electronic Many-Qubit States Encoded in the Electron Spin of Quantum Dots via Single Photons. Phys. Rev. Lett. 2005; 94:107401. doi: 10.1103/PhysRevLett.94.107401

18
(a)Elzerman JM, Hanson R, Willems van Beveren LH, Witkamp B, Vandersypen L MK and Kouwenhoven LP. Single-shot read-out of an individual electron spin in a quantum dot. Nature 2004; 430: 431-435. doi: 10.1038/nature02693 (b) Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G and Finley JJ. Optically programmable electron spin memory using sem-iconductor quantum dots. Nature 2004; 432:81-84. doi:10.1038/nature03008
19

Reithmaier JP, S k G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh LV, Kulakovskii VD, Reinecke TL and Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 2004; 432:197-200. doi: 10.1038/nature02969

20

Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs HM, Rupper G, Ell C, Shchekin OB and Deppe DG. Vacuum Rabi splitting with a single quantum dot in a photon-ic crystal nanocavity. Nature 2004; 432:200-203. doi: 10.1038/nature03119

21

Badolato A, Hennessy K, Atatüre M, Dreiser J, Hu Evelyn, Petroff PM, Imamo lu A. Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes. Science 2005;308:1158-1161. doi: 10.1126/science.1109815

22

Karlsson A and Bourennane M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 1998; 58:4394-4400. doi: 10.1103/PhysRevA.58.4394

23

Leuenberger MN. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots. Phys. Rev. B 2006; 73:075312. doi: 10.1103/PhysRevB.73.075312

24
(a) Ionicioiu R and Popescu AE. Single-spin measurement using spin-orbital entanglement. New J. Phys. 2005; 7:120. doi:10.1088/1367-2630/7/1/120 (b) Rugar D, Budakian R, Mamin HJ and Chui BW. Single spin detection by magnetic resonance force microscopy. Nature 2004; 430:329-332. doi:10.1038/nature02658 (c) Santori C, Fattal D, Vu kovi J, Solomon GS and Yamamoto Y. Indistinguishable photons from a single-photon device. Nature 2002; 419:594-597. doi:10.1038/nature01086
25
(a) Sagi Y. 2003 New scheme for generating GHZ like state of $n$ photons. (Preprint quant-ph/0307097) Phys. Rev. A 2003; 68: 042320. (b) Liang LM, Chen PX, Li CZ and Huang MQ. Purification of multipartite entangled mixed states under local manipulation. Phys. lett. A 2002;294: 71-73.
26

Zhang J and Braunstein SL. Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 2006; 73:032318. doi: 10.1103/PhysRevA.73.032318

27

Cabello A. Multiparty multilevel Greenberger-Horne-Zeilinger states. Phys. Rev. A 2001; 63:022104. doi: 10.1103/PhysRevA.63.022104

28

Guo GP, Zhang H, Guo GC. Quantum Non-Demolition Bell State Measurement and N-party GHZ State Preparation in Quantum Dot. (Preprint quant-ph/0511242) Modern Physics Letters B 2007; 21:867-874.

29

Lu CY, Zhou XQ, Guhne O, Gao WB, Zhang J, Yuan ZS, Goebel A, Yang T and Pan JW. Experimental entanglement of six photons in graph states. Nature Physics 2007; 3:91-95.

30

Zhao Z, Chen YA, Zhang AN, Yang T, Briegel HJ. and Pan JW. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 2004; 430:54-58. doi: 10.1038/nature02643

31

Pan JW, Daniell M, Gasparoni S, Weihs G and Zeilinger A. Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation. Phys. Rev. Lett. 2001; 86:4435-4438. doi:10.1103/PhysRevLett.86.4435

Nano Biomedicine and Engineering
Pages 109-116
Cite this article:
Hu K, Jin B, Wang Q. QDs-Cavity Approach to Controlled Quantum Teleportation of GHZ-Like State. Nano Biomedicine and Engineering, 2010, 2(2): 109-116. https://doi.org/10.5101/nbe.v2i2.p109-116

289

Views

2

Downloads

1

Crossref

3

Scopus

Altmetrics

Received: 20 April 2010
Accepted: 08 June 2010
Published: 26 June 2010
© 2010 K. Hu et al.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return