AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (275.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Biological Application of Digital Microfluidics Technology

Bin Liu1Yan Deng1,2Binbing Qin1Zhiyang Li1Nongyue He1,2( )
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412008, China
Show Author Information

Abstract

Digital microfluidics technology offers a platform for developing diagnostic applications with the advantages of portability, sample and reagent volume reduction, faster analysis, increased automation, low power consumption, compatibility with mass manufacturing and high throughput. In addition to diagnostics, digital microfluidics is finding use in nucleic acid analysis, peptide and protein analysis, cell analysis, drug analysis and delivery and immunization analysis. In this review, we describe these applications, their implementation, and associated design issues. As other review in the digital microfluidics technology, there have been and will be unexpected developments as DMF matures, but we predict that the future is bright for this promising technology at the last section.

References

1

Verpoorte E, Rooij NFD. Microfluidics meets MEMS. Proceedings of IEEE 2003; 91: 930-953.doi:10.1109/JP ROC.2003.813570

2

Pollack MG, Fair RB, Shenderov AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 2000; 77:1725–1727. doi:10.1063/1.1308534

3

Gascoyne PRC, Vykoukal JV. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 2004; 92:22-42.doi:10.110 9/JPROC.2003.820535

4

Anton DA, Valentino JP, Trojan SM, Wagner S. Thermo-capillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. Microelectromech Syst 2003; 12:873–879. doi:10.1109/JMEMS.200 3.820267

5

Renaudin A, Tabourier P, Camart JC. Surface acoustic wave two-dimensional transport and location of microdroplets using echo signal. Journal of Applied Physics. 2006; 100: 104103-1-104103-3. doi:10.1063/1.2388725

6

Pollack MG, Fair RB, Shenderov AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys Lett 2000; 77: 1725-1726. doi:10.1 063/1.1308534

7

Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J. Electrowetting and electrowetting -on- dielectric for microscale liquid handling. Sensors and Actuators 2002; 95: 259-268. doi:10.1016/S0924-4247(01)00734-8

8

Mugele F, Baret JC. Electrowetting: from basics to applications. Phys Condens Matter 2005; 17:705–774. doi:10.1088/0953-8984/17/28/R01

9

Biddut B, Homayoun N. Simulation of Droplet Position Control in Digital Microfluidic Systems. Journal of Dynamic Systems, Measurement, and Control 2010; 132:014501-1-014501-3.doi:10.1 115/1.4000077

10

Fair RB, Khlystov A, Tailor T, Ivanov V, Evans RD, Sri-nivasan V, Pamula V, Pollack MG, Griffin PB, Zhou J. Chemical and biological applications of digital-microfluidic devices. IEEE Design and Test of Computer 2007; 24:10-24. doi:10.1109/MDT.2007.8

11

Fair RB. Digital microfluidics: is a true lab-on-a-chip possible?. Microfluid Nanofluid 2007; 3:245-281. doi:10.1007/s10404-007-0161-8

12

Cui D, Li Q, Huang P, Wang K, Kong Y, Zhang H, You X, He R, Song H, Wang J, Bao C, Asahi T, Gao F, Osaka T. Real time PCR based on Fluorescent Quenching of Mercaptoacetic Acid-Modified CdTe Quantum Dots for Ultra-sensitive Specific Detection of Nucleic Acids. Nano Biomed Eng 2010; 2: 44-54. doi: 10.5101/nbe.v2i1.p44-54

13

Hua Z, Jeremy LR, Allen EE, Vijay S, Vamsee K P, Wiley AS, Jonathan LB, Thomas GM, Michael GP. Multiplexed Real-Time Polymerase Chain Reaction on a Digital Microfluidic Platform. Anal. Chem 2010; 82:2310-2316. doi:10.1021/ac90251 0u

14

Yung TKF, Chan KCA, Mok TSK, Tong J, To KF, Lo YMD. Single-Molecule Detection of Epidermal Growth Factor Receptor Mutations in Plasma by Microfluidics Digital PCR in Non-Small Cell Lung Cancer Patients. Clinical Cancer Research 2009; 15: 2076-2084. doi:10.1158/1078-0432.CC R-08-2622

15

Lun FMF, Chiu RWK, Chan KCA, Leung TY, Lau TK, Lo YMD. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clinical Chemistry 2008; 54: 1664-1672. doi:10.1373/clinche m.2008.1 11385

16

Mohamed A, Aaron RW. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 2008; 4:349-355. doi:10.1007 /s10404-007-0190-3

17

Mohamed A, Aaron RW. Rapid prototyping in copper substrates for digital microfluidics. Adv Mater 2007; 19: 133-137. doi:10.1002/adma.2006 01818

18

Chatterjee D, Ytterberg AJ, Son SU, Loo JA, Garrell RL. Integration of Protein Processing Steps on a Droplet Microfluidics Platform for MALDI-MS Analysis. Analytical Chemistry 2010; 82: 2095-2101. doi:10.1109/JPROC.2003. 813570

19

Mais JJ, Aaron RW, Digital Microfluidic Method for Protein Extraction by Precipitation. Analytical Chemistry 2009; 81:330-335. doi:10.1021/ac8021 554

20

Tian F, Adriele PM, Giovani E, Andrea B, Winfried M, Holger S, Wolfgang K, Tobias S. Macrophage cellular adaptation, localization and imaging of different size polystyrene particles. Nano Biomed Eng 2009; 1: 13-26. doi: 10.5101/nbe.v1 i1.p13-26

21

Cui D, Han Y, Li Z, Song H, Wang K, He R, Liu B, Liu H, Bao C, Huang P, Ruan J, Gao F, Yang H, Sung-Cho H, Ren Q, Shi D. Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer. Nano Biomed Eng 2009; 1:61-74. doi:10.5101/n be.v1i 1.p61-74

22

Chen D, Wu X, Wang J, Han B, Zhu P, Peng C. Morpho-logical Observation of Interaction between PAMAM Den-drimer Modified Single Walled Carbon Nanotubes and Pancreatic Cancer Cells. Nano Biomed Eng 2010; 2: 60-65. doi:10.5101/nb e.v2i1.p60-65.

23

Barbulovic-Nad I, Yang H, Park PS, Wheeler AR. Digital microfluidics for cell-based assays. Lab On Chip 2008; 8: 519-526. doi:10.1039/b7 17759c

24

Cui D, Han Y, Li Z, Song H, Wang K, He R, Liu B, Liu H, Bao C, Huang P, Ruan J, Gao F, Yang H, Sung-Cho H, Ren Q, Shi D. Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer. Nano Biomed Eng 2009; 1:61-74. doi: 10.5101/nbe.v1i 1.p61-74

25

Hartley L, Kaler KVIS, Yadid-Pecht O. Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip. IEEE Trans Circuits Syst.-I 2007; 54:99-110. doi:10.1109/TCSI. 2006.887456

26

Hosseini Y, Kaler KVIS. Integrated CMOS optical sensor for cell detection and analysis. Sensors and Actuators A: Physical 2010; 157:1-8. doi:10.1016/j.sna.2009.10.018

27

Liu C. Research and Development of Nanopharmaceuti-cals in China. Nano Biomed Eng 2009; 1:1-12. doi:10.5 101/nbe.v1i1.p1-12

28

Tatiana NL, Zhang F, Jonathan S Dordick, Jian Liu, Robert J Linhardt. Recent progress and applications in glyco-saminoglycan and heparin research. Current Opinion in Chemical Biology 2009; 13:633-640. doi:10.1016/j.cbp a.2009.08.0 17

29

Kanaka H, Abraham PL. Controllable Microfluidic Syn-thesis of Multiphase Drug-Carrying Lipospheres for Site-Targeted Therapy. Biotechnol Prog 2009; 25:938-945. doi:10.1002/btpr.214

30

David SM, Ramakrishna S, Allen E, Jeremy R, Deeksha B, Ronald G, Michael C, Rebecca B, Vamsee P. Digital Mi-crofluidics-A Future Technology in the Newborn Screening Laboratory. Seminars in Perinatology 2010; 34:163-169. doi:10.1053/j.semperi.2009.12.008

31

Lin C, Wang J, Wu H, Lee G. Microfluidic Immunoassays. Journal of the Association for Laboratory Automation 2010; 15:253-274.doi:10.101 6/j.jala.2010.01.013

Nano Biomedicine and Engineering
Pages 149-154
Cite this article:
Liu B, Deng Y, Qin B, et al. Biological Application of Digital Microfluidics Technology. Nano Biomedicine and Engineering, 2010, 2(2): 149-154. https://doi.org/10.5101/nbe.v2i2.p149-154

277

Views

2

Downloads

0

Crossref

4

Scopus

Altmetrics

Received: 15 May 2010
Accepted: 22 June 2010
Published: 18 July 2010
© 2010 B. Liu et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return