AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (608.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Characterization of Monocytes-targeted Nanocarriers Biodistribution in Leukocytes in ex-vivo and in-vivo Models

Einat Cohen-Sela1Michael Chorny2Dikla Gutman1Sivan Komemi1Nickolay Koroukhov1Gershon Golomb1( )
Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem
Cardiology Research, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
Show Author Information

Abstract

Aims

On intravenous administration, unprotected nanocarriers are rapidly captured by the mononuclear phagocytic system (MPS). This has been exploited for passive targeting of nanoparticulate drug delivery systems for depleting circulating monocytes and macrophages for the treatment of various disorders. However, the extent of nanocarriers biodistribution among leukocytes, has not been characterized. The aim of this work was to examine the biodistribution of monocyte-targeted nanoparticles and liposomes in leukocytes.

Materials & Methods

Fluorescently-labeled large negative liposomes (LN-LIP, 130±33 nm, -25.2±6.3 mv), large negative NP (LN-NP, 133±40 nm, -40±8 mv), large positive NP (LP-NP, 121±36 nm, +62±9 mv), and small negative NP (SN-NP, 85±26 nm, - 15±2 mv) were formulated. Fluorescence activated cell sorting (FACS) was utilized to determine internalization in rabbit's blood both ex-vivo and in-vivo.

Results & Conclusions

Monocytes, neutrophils, and lymphocytes internalized the NP. SN-NP exhibited the highest selectivity towards monocytes. Granulocytes preferentially internalized LN-LIP in comparison to all polymeric NP formulations. NP charge had no effect on their engulfment by granulocytes, while NP size was found to be an important factor as granulocytes showed preference towards large NP formulations (LN-NP and LP-NP). Lymphocytes preferentially internalized large negatively charged formulations (LN-LIP and -NP). The ex-vivo results failed to predict in-vivo results. Formulations targeted to monocytes distribute into other leukocytes as well, which should be determined in-vivo.

Electronic Supplementary Material

Download File(s)
nbe-2-2-91_ESM.pdf (51.5 KB)

References

1

Farokhzad OC and Langer R. Nanomedicine:developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58:1456-9. doi: 10.1016/j.addr.2006.09.011

2

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS and Farokhzad OC. Nanoparticles in medicine:therapeutic applications and developments. Clin Pharmacol Ther 2008; 83:761-9. doi: 10.1038/sj.clpt.6100400

3

Li SD and Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008; 5:496-504. doi: 10.1021/mp800049w

4

Ishida T, Harashima H and Kiwada H. Liposome clearance. Biosci Rep 2002; 22:197-224. doi: 10.1023/A:1020134521778

5

Moghimi SM, Hunter AC and Murray JC. Nanomedicine:current status and future prospects. FASEB J 2005; 19:311-30. doi: 10.1096/fj.04-2747rev

6

Owens DE, 3rd and Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307:93-102. doi: 10.1016/j.ijpharm.2005.10.010

7

Alexis F, Pridgen E, Molnar LK and Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5:505-15. doi: 10.1021/mp800051m

8

Moghimi SM, Hunter AC and Murray JC. Long-circulating and target-specific nanoparticles:theory to practice. Pharmacol Rev 2001; 53:283-318.

9

Afergan E, Epstein H, Dahan R, Koroukhov N, Rohekar K, Danenberg HD and Golomb G. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release 2008; 132:84-90.

10

Bakker-Woudenberg IA, Storm G and Woodle MC. Liposomes in the treatment of infections. J Drug Target 1994; 2:363-71. doi: 10.3109/10611869408996811

11

Danenberg HD, Fishbein I, Gao J, Monkkonen J, Reich R, Gati I, Moerman E and Golomb G. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation 2002; 106:599-605.

12

van Rooijen N and Sanders A. Liposome mediated depletion of macrophages:mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174:83-93. doi: 10.1016/0022-1759(94)90012-4

13

van Rooijen N and van Kesteren-Hendrikx E. Clodronate liposomes:perspectives in research and therapeutics. J Liposome Res 2002; 12:81-94. doi: 10.1081/LPR-120004780

14

Cohen-Sela E, Dangoor D, Epstein H, Gati I, Danenberg HD, Golomb G and Gao J. Nanospheres of a bisphosphonate attenuate intimal hyperplasia. J Nanosci Nanotechnol 2006; 6:3226-34.

15

Cohen-Sela E, Rosenzweig O, Gao J, Epstein H, Gati I, Reich R, Danenberg HD and Golomb G. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J Controlled Rel 2006; 113:23-30.

16

Danenberg HD, Fishbein I, Epstein H, Waltenberger J, Moerman E, Monkkonen J, Gao J, Gathi I, Reich R and Golomb G. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. J Cardiovasc Pharmacol 2003; 42:671-9.

17

Danenberg HD, Golomb G, Groothuis A, Gao J, Epstein H, Swaminathan RV, Seifert P and Edelman ER. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation 2003; 108:2798-804.

18

Markovsky E, Koroukhov N and Golomb G. Additive-free albumin nanoparticles of alendronate for attenuating inflammation through monocyte inhibition. Nanomed 2007; 2:545-53.

19

Haber E, Danenberg HD, Koroukhov N, Ron-El R, Golomb G and Schachter M. Peritoneal macrophage depletion by li-posomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod 2009; 24:398-407.

20

Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD and Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 2009; 133:90-5.

21
Fessi H, Devissaguet JP, Puisieux F and Thies C. U.S. patent 1992; 5: 528.
22

Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G and Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J 2007; 21:2510-9. doi: 10.1096/fj.06-8070com

23

Szoka F, Jr. and Papahadjopoulos D. Comparative proper-ties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 1980; 9:467-508. doi: 10.1146/annurev.bb.09.060180.002343

24

Epstein H, Berger V, Levi I, Eisenberg G, Koroukhov N, Gao J and Golomb G. Nanosuspensions of alendronate with gallium or gadolinium attenuate neointimal hyperplasia in rats. J Controlled Rel 2007; 117:322-32.

25

Bucher DJ, Kharitonenkov IG, Zakomirdin JA, Grigoriev VB, Klimenko SM and Davis JF. Incorporation of influenza virus M-protein into liposomes. J Virol 1980; 36:586-90.

26

Leo E, Contado C, Bortolotti F, Pavan B, Scatturin A, Tosi G, Manfredini S, Angusti A and Dalpiaz A. Nanoparticle formulation may affect the stabilization of an antiischemic prodrug. Int J Pharm 2006; 307:103-13. doi: 10.1016/j.ijpharm.2005.09.031

27

Gibaud S, Demoy M, Andreux JP, Weingarten C, Gouritin B and Couvreur P. Cells involved in the capture of nanoparticles in hematopoietic organs. J Pharm Sci 1996; 85:944-50. doi: 10.1021/js960032d

28

Zambaux MF, Faivre-Fiorina B, Bonneau F, Marchal S, Merlin JL, Dellacherie E, Labrude P and Vigneron C. Involvement of neutrophilic granulocytes in the uptake of biodegradable non-stealth and stealth nanoparticles in guinea pig. Biomaterials 2000; 21:975-80. doi: 10.1016/S0142-9612(99)00233-1

29

Ke Y and Kapp JA. Exogenous antigens gain access to the major histocompatibility complex class Ⅰ processing pathway in B cells by receptor-mediated uptake. J Exp Med 1996; 184:1179-84. doi: 10.1084/jem.184.3.1179

30

Blumenthal R, Weinstein JN, Sharrow SO and Henkart P. Liposome--lymphocyte interaction:saturable sites for transfer and intracellular release of liposome contents. Proc Natl Acad Sci U S A 1977; 74:5603-7. doi: 10.1073/pnas.74.12.5603

31

Leroux JC, Gravel P, Balant L, Volet B, Anner BM, Allemann E, Doelker E and Gurny R. Internalization of poly(D,L-lactic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles. J Biomed Mater Res 1994; 28:471-81.doi: 10.1002/jbm.820280410

32

Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM and Hanlon DJ. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006; 117:78-88.doi: 10.1111/j.1365-2567.2005.02268.x

33

Zhang JS, Liu F and Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev 2005; 57:689-98. doi: 10.1016/j.addr.2004.12.004

34

Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA and Leenen PJ. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172:4410-7.

35

Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R and Pittet MJ. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325:612-6. doi:10.1126/science.1175202

Nano Biomedicine and Engineering
Pages 91-99
Cite this article:
Cohen-Sela E, Chorny M, Gutman D, et al. Characterization of Monocytes-targeted Nanocarriers Biodistribution in Leukocytes in ex-vivo and in-vivo Models. Nano Biomedicine and Engineering, 2010, 2(2): 91-99. https://doi.org/10.5101/nbe.v2i2.p91-99

255

Views

11

Downloads

5

Crossref

14

Scopus

Altmetrics

Received: 02 May 2010
Accepted: 06 June 2010
Published: 26 June 2010
© 2010 E. Cohen-Sela et al.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return