AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (724.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Rapid and Sensitive Colorimetric ELISA using Silver Nanoparticles, Microwaves and Split Ring Resonator Structures

Sarah A. Addae1Melissa A. Pinard1Humeyra Caglayan2Semih Cakmakyapan2Deniz Caliskan2Ekmel Ozbay2Kadir Aslan2( )
Morgan State University, Department of Chemistry, Baltimore, MD, 21251, USA
Bilkent University, Nanotechnology Research Center, Ankara, 06680, TURKEY
Show Author Information

Abstract

We report a new approach to colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) that reduces the total assay time to <2 min and the lower-detection-limit by 100-fold based on absorbance readout. The new approach combines the use of silver nanoparticles, microwaves and split ring resonators (SRR). The SRR structure is comprised of a square frame of copper thin film (30 μm thick, 1 mm wide, overall length of ~9.4 mm on each side) with a single split on one side, which was deposited onto a circuit board (2x2 cm2). A single micro-cuvette (10 μl volume capacity) was placed in the split of the SRR structures. Theoretical simulations predict that electric fields are focused in and above the micro-cuvette without the accumulation of electrical charge that breaks down the copper film. Subsequently, the walls and the bottom of the micro-cuvette were coated with silver nanoparticles using a modified Tollen’s reaction scheme. The silver nanoparticles served as a mediator for the creation of thermal gradient between the bioassay medium and the silver surface, where the bioassay is constructed. Upon exposure to low power microwave heating, the bioassay medium in the micro-cuvette was rapidly and uniformly heated by the focused electric fields. In addition, the creation of thermal gradient resulted in the rapid assembly of the proteins on the surface of silver nanoparticles without denaturing the proteins. The proof-of-principle of the new approach to ELISA was demonstrated for the detection of a model protein (biotinylated-bovine serum albumin, b-BSA). In this regard, the detection of b-BSA with bulk concentrations (1 μM to 1 pM) was carried out on commercially available 96-well high throughput screening (HTS) plates and silver nanoparticle-deposited SRR structures at room temperature and with microwave heating, respectively. While the room temperature bioassay (without microwave heating) took 70 min to complete, the identical bioassay took <2 min to complete using the SRR structures (with microwave heating). A lower detection limit of 0.01 nM for b-BSA (100-fold lower than room temperature ELISA) was observed using the SRR structures.

References

1

Chuang KH, Tzou SC, Cheng TC, Kao CH, Tseng WL, Shiea J, Liao KW, Wang YM, Chang YC, Huang BJ, Wu CJ, Chu PY, Roffler SR, Cheng TL. Measurement of Poly(ethylene glycol) by Cell-Based Anti-poly(ethylene glycol) ELISA. Analytical Chemistry 2010; 82: 2355-2362. doi:10.1021/ac902548m

2

Samineni S, Parvataneni S, Kelly C, Gangur V, Karmaus W, Brooks K. Optimization, comparison, and application of colorimetric vs. chemiluminescence based indirect sandwich ELISA for measurement of human IL-23. Journal of Immunoassay & Immunochemistry 2006; 27: 183-193.doi:10.1080/15321810600573051

3

Jablonski JE, Fu TJ, Jackson LS, Gendel SM. Determination of Protein Levels in Soy and Peanut Oils by Colorimetric Assay and ELISA. Journal of Aoac International 2010; 93: 213-220.

4

Sapsford KE, Francis J, Sun S, Kostov Y, Rasooly A. Miniaturized 96-well ELISA chips for staphylococcal enterotoxin B detection using portable colorimetric detector. Analytical and Bioanalytical Chemistry 2009; 394: 499-505.doi:10.1007/s00216-009-2730-z

5

Aslan K, Geddes CD. Microwave-accelerated metalenhanced fluorescence: Platform technology for ultrafast and ultrabright assays. Analytical Chemistry 2005; 77: 8057-8067.doi:10.1021/ac0516077

6

Aslan K, Geddes CD. New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures. Analyst 2008; 133: 1469-1480.doi:10.1039/b808292h

7

Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD. Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology 2005; 16: 55-62.doi:10.1016/j.copbio.2005.01.001

8

Previte MJR, Aslan K, Geddes CD. Spatial and temporal control of microwave triggered chemiluminescence: A protein detection platform. Analytical Chemistry 2007; 79: 7042-7052.doi:10.1021/ac071042+

9

Aslan K, Previte MJ, Zhang Y, Gallagher T, Baillie L, Geddes CD. Extraction and detection of DNA from Bacillus anthracis spores and the vegetative cells within 1 min. Analytical Chemistry 2008; 80: 4125-4132.doi:10.1021/ac800519r

10

Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Low frequency plasmons in thin-wire structures. Journal of Physics-Condensed Matter 1998; 10: 4785-4809.doi:10.1088/0953-8984/10/22/007

11

Gay-Balmaz P, Martin OJF. Electromagnetic resonances in individual and coupled split-ring resonators. Journal of Applied Physics 2002; 92: 2929-2936.doi:10.1063/1.1497452

12

Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. Ieee Transactions on Microwave Theory and Techniques 1999; 47: 2075-2084.doi:10.1109/22.798002

13

Smith DR, Padilla WJ, Vier DC, Nemat-Nasser, S. C., Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 2000; 84: 4184-4187. doi:10.1103/PhysRevLett.84.4184

14

Markos P, Soukoulis CM. Numerical studies of left-handed materials and arrays of split ring resonators. Physical Review E 2002; 65: -.

15

Markos P, Soukoulis CM. Transmission properties and effective electromagnetic parameters of double negative metamaterials. Optics Express 2003; 11: 649-661.doi:10.1364/OE.11.000649

16

Ziolkowski RW. Design, fabrication, and testing of double negative metamaterials. Ieee Transactions on Antennas and Propagation 2003; 51: 1516-1529.doi:10.1109/TAP.2003.813622

17

Katsarakis N, Koschny T, Kafesaki M, Economou EN, Soukoulis CM. Electric coupling to the magnetic resonance of split ring resonators. Applied Physics Letters 2004; 84: 2943-2945.doi:10.1063/1.1695439

18

Koschny T, Kafesaki M, Economou EN., Soukoulis CM. Effective medium theory of left-handed materials. Physical Review Letters 2004; 93: -.

19

Koschny T, Markos P, Smith DR, Soukoulis CM. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Physical Review E 2003; 68: -.

20

Hsu YJ, Huang YC, Lih JS, Chern JL. Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials. Journal of Applied Physics 2004; 96: 1979-1982.doi:10.1063/1.1767290

21

Baena JD, Marques R, Medina F, Martel J. Artificial magnetic metamaterial design by using spiral resonators. Physical Review B 2004; 69: -.

22

Marques R, Mesa F, Martel J, Medina F. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - Theory and experiments. Ieee Transactions on Antennas and Propagation 2003; 51: 2572-2581.doi:10.1109/TAP.2003.817562

23

Sauviac B, Simovski CR, Tretyakov SA. Double split-ring resonators: Analytical modeling and numerical simulations. Electromagnetics 2004; 24: 317-338.doi:10.1080/02726340490457890

24

Shamonin M, Shamonina E, Kalinin V, Solymar L. Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring. Journal of Applied Physics 2004; 95: 3778-3784.doi:10.1063/1.1652251

25

Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T, Soukoulis CM. Magnetic response of metamaterials at 100 terahertz. Science 2004; 306: 1351-1353.doi:10.1126/science.1105371

26

Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X. Terahertz magnetic response from artificial materials. Science 2004; 303: 1494-1496.doi:10.1126/science.1094025

27

Caglayan H, Ozbay E. Surface wave splitter based on metallic gratings with sub-wavelength aperture. Optics Express 2008; 16: 19091-19096.doi:10.1364/OE.16.019091

28

Aslan K, Holley P, Geddes CD. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery. Journal of Immunological Methods 2006; 312: 137-147.doi:10.1016/j.jim.2006.03.009

29

Aydin K, Guven K, Katsarakis N, Soukoulis CM, Ozbay E. Effect of disorder on magnetic resonance band gap of splitring resonator structures. Optics Express 2004; 12: 5896-5901.doi:10.1364/OPEX.12.005896

30

Movchan AB, Guenneau S. Split-ring resonators and localized modes. Physical Review B 2004; 70: -.

31

Aslan K, Geddes CD. Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids. Analytical Chemistry 2007; 79: 2131-2136.doi:10.1021/ac0620967

32

Green NM. Advanced Protein Chemistry 1975; 29: 85-133.doi:10.1016/S0065-3233(08)60411-8

33

Leadbeater NE, Stencel LM, Wood EC. Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions. Org Biomol Chem 2007; 5: 1052-1055.doi:10.1039/b617544a

34

Lin SS, Wu CH, Sun MC, Sun CM, Ho YP. Microwaveassisted enzyme-catalyzed reactions in various solvent systems. J Am Soc Mass Spectrom 2005; 16: 581-588.doi:10.1016/j.jasms.2005.01.012

35

Mazumder S, Laskar DD, Prajapati D, Roy MK. Microwave-induced enzyme-catalyzed chemoselective reduction of organic azides. Chem Biodivers 2004; 1: 925-929.doi:10.1002/cbdv.200490074

36

Previte MJ, Aslan K, Malyn SN, Geddes CD. Microwave triggered metal enhanced chemiluminescence: quantitative protein determination. Anal Chem 2006; 78: 8020-8027.doi:10.1021/ac061161+

37

Aslan K. Rapid Whole Blood Bioassays using MicrowaveAccelerated Metal-Enhanced Fluorescence. Nano Biomedicine and Engineering 2010; 2: 1-9.doi:10.5101/nbe.v2i1.p1-7

38
Aslan K, Gryczynski I, Malicka J, Lakowicz JR, Geddes CD, Metal-Enhanced Fluorescence: Application to HighThroughput Screening and Drug Discovery, in Drug Discovery Handbook, S. Gad, Ed. New Jersey: Wiley & Sons, 2005.doi:10.1002/0471728780.ch14
39

Aslan K, Luhrs CC, Perez-Luna, V. H. Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. Journal of Physical Chemistry B 2004; 108: 15631-15639.doi:10.1021/jp036089n

40

Aslan K, Geddes CD. Microwave Accelerated and Metal Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis. Plasmonics 2006; 1: 53-59.doi:10.1007/s11468-006-9006-7

41

Aslan K, Malyn SN, Bector G, Geddes CD. Microwaveaccelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst 2007; 132: 1122-1129.doi:10.1039/b708069g

42

Aslan K, Zhang YX, Hibbs S, Baillie L, Previte MJR, Geddes CD. Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in < 30 seconds. Analyst 2007; 132: 1130-1138.doi:10.1039/b707876e

Nano Biomedicine and Engineering
Pages 155-164
Cite this article:
Addae SA, Pinard MA, Caglayan H, et al. Rapid and Sensitive Colorimetric ELISA using Silver Nanoparticles, Microwaves and Split Ring Resonator Structures. Nano Biomedicine and Engineering, 2010, 2(3): 155-164. https://doi.org/10.5101/nbe.v2i3.p155-164

230

Views

7

Downloads

8

Crossref

11

Scopus

Altmetrics

Received: 23 August 2010
Accepted: 26 September 2010
Published: 02 October 2010
© 2010 S.A. Addae et al.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return