AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (325.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Quantitative Comparison of Protein Surface Coverage on Glass Slides and Silver Island Films in Metal-Enhanced Fluorescence-based Biosensing Applications

Tsehai A.J. Grell1Eduardo Paredes2Subha R. Das2Kadir Aslan1( )
Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
Carnegie Mellon University, Department of Chemistry, 4400 Fifth Avenue Pittsburgh, PA 15213, USA
Show Author Information

Abstract

The use of Metal-Enhanced Fluorescence (MEF) phenomenon in fluorescence-based bioassays affords for increased sensitivity to be realized by incorporating metal nanoparticles onto planar surfaces. The close-range interactions of metal-fluorophores result in increased fluorescence emission from the bioassays, which in turn affords for the detection of target biomolecules at lower concentrations. Moreover, the use of silver nanoparticles increases the photostability of fluorophores improving the detectability of fluorescence emission under prolonged use of excitation light. Although numerous reports on MEF-based biosensing applications exist, the contribution of protein coverage on Silver Island Films (SIFs) on the increased fluorescence emission was never investigated. This work presents our findings on the quantitative comparison of protein surface coverage on SIFs and blank glass slides. In this regard, identical protein bioassay for a model protein (biotinylated bovine serum albumin, b-BSA) on these surfaces is constructed and the relative extent of protein surface coverage on SIFs and blank glass slides was determined using radio-labeled biomolecules. It was found that the total scintillation counts on SIFs and blank glass slides were similar for BSA concentrations ranging from 1 μM to 1 pM, which implies that increased fluorescence in MEF-based biosensing applications is only due to metal-fluorophore interactions.

References

1

Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Analytical Biochemistry 1998; 262: 137-156. doi:10.1006/abio.1998.2759

2

Aslan K, Perez-Luna VH. Quenched emission of fluorescence by ligand functionalized gold nanoparticles. Journal of Fluorescence 2004; 14: 401-405. doi:10.1023/B:JOFL.0000031821.74706.ea

3

Goldys EM, Drozdowicz-Tomsia K, Xie F, Shtoyko T, Matveeva E, Gryczynski I, Gryczynski Z. Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture. J Am Chem Soc 2007; 129: 12117-12122. doi:10.1021/ja071981j

4

Xie F, Baker MS, Goldys EM. Homogeneous SilverCoated Nanoparticle Substrates for Enhanced Fluorescence Detection. Journal of Physical Chemistry B 2006; 110: 23085-23091. doi:10.1021/jp062 170p

5

Van Dyke K, Van Dyke R, Luminescence Immunoassay and Molecular Applications. Boca Raton, FL.: CRC Press, 1990.

6
Difilippantonio M, Ried T, Technicolor genome analysis, in Topics in Fluorescence Spectroscopy, vol. 7, J. R. Lakowicz, Ed. New York: Kluwer Academic Publishers/Plenum Press, 2003, pp. 291-316.
7

Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD. Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology 2005; 16: 55-62. doi:10.1016/j.copbio.2005.01.001

8

Aslan K, Malyn SN, Geddes CD. Metal-enhanced fluorescence from gold surfaces: angular dependent emission. J Fluoresc 2007; 17: 7-13. doi:10.1007/s10895-006-0149-x

9

Zhang YX, Aslan K, Previte MJR, Geddes CD. Metalenhanced fluorescence from copper substrates. Applied Physics Letters 2007; 90: 173116.

10

Ray K, Szmacinski H, Lakowicz JR. Enhanced fluorescence of proteins and label-free bioassays using aluminum nanostructures. Anal Chem 2009; 81: 6049-6054. doi:10.1021/ac900263k

11

Aslan K, Malyn SN, Geddes CD. Fast and sensitive DNA hybridization assays using microwave-accelerated metalenhanced fluorescence. Biochemical and Biophysical Research Communications 2006; 348: 612-617. doi:10.1016/j.bbrc.2006.07.093

12

Aslan K, Zhang YX, Geddes CD. Sonication-Assisted Metal-Enhanced Fluorescence-Based Bioassays. Analytical Chemistry 2009; 81: 4713-4719. doi:10.1021/ac802535s

13

Liebermann T, Knoll W, Sluka P, Herrmann R. Complement hybridization from solution to surface-attached probe-oligonucleotides observed by surface-plasmon-fieldenhanced fluorescence spectroscopy. Colloids and Surfaces A-Physicochemical and Engineering Aspects 2000; 169: 337-350. doi:10.1016/S0927-7757(00)00449-0

14

Malicka J, Gryczynski I, Lakowicz JR. DNA hybridization assays using metal-enhanced fluorescence. Biochemical and Biophysical Research Communications 2003; 306: 213-218. doi:10.1016/S0006-291X(03)00935-5

15

Matveeva EG, Gryczynski Z, Lakowicz JR. Myoglobin immunoassay based on metal particle-enhanced fluorescence. Journal of Immunological Methods 2005; 302: 26-35. doi:10.1016/j.jim.2005.04.020

16

Wu M, Lakowicz JR, Geddes CD. Enhanced lanthanide luminescence using silver nanostructures: Opportunities for a new class of probes with exceptional spectral characteristics. Journal of Fluorescence 2005; 15: 53-59. doi:10.1007/s10895-005-0213-y

17

Aslan K, Lakowicz JR, Szmacinski H, Geddes CD. Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: Metal-enhanced fluorescence sensing. Journal of Fluorescence 2005; 15: 37-40. doi:10.1007/s10895-005-0211-0

18

Aroca R, Kovacs GJ, Jennings CA, Loutfy RO, Vincett PS. Fluorescence Enhancement from Langmuir-Blodgett Monolayers on Silver Island Films. Langmuir 1988; 4: 518-521. doi:10.1021/la00081a004

19
Aslan K, Gryczynski I, Malicka J, Lakowicz JR, Geddes CD, Metal-Enhanced Fluorescence: Application to HighThroughput Screening and Drug Discovery, in Drug Discovery Handbook, S. Gad, Ed. New Jersey: Wiley & Sons, 2005.
20

Aslan K. Rapid Whole Blood Bioassays using MicrowaveAccelerated Metal-Enhanced Fluorescence. Nano Biomedicine and Engineering 2010; 2: 1-9.

21

Aslan K, Geddes CD. Microwave-accelerated metalenhanced fluorescence: Platform technology for ultrafast and ultrabright assays. Analytical Chemistry 2005; 77: 8057-8067. doi:10.1021/ac0516077

22

Aslan K, Malyn SN, Geddes CD. Angular-dependent metal-enhanced fluorescence from silver colloid-deposited films: opportunity for angular-ratiometric surface assays. Analyst 2007; 132: 1112-1121.doi: 10.1039/b709170b

23

Aslan K, Malyn SN, Geddes CD. Angular-Dependent Metal-Enhanced Fluorescence from Silver Island Films. Chem Phys Lett 2008; 453: 222-228. doi:10.1016/j.cplett.2008.01.034

24

Aslan K, Previte MJR, Zhang YX, Geddes CD. MetalEnhanced Fluorescence from Nanoparticulate Zinc Films. Journal of Physical Chemistry C 2008; 112: 18368-18375.

25

Aslan K, Baillie L, Geddes CD. Ultra Fast And Sensitive Detection Of Biological Threat Agents Using Microwaves, Nanoparticles And Luminescence. Journal of Medical Chemical, Biological and Radiological Defense 2010; 8: 1-21.

26

Aslan K, Geddes CD. Microwave Accelerated and Metal Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis. Plasmonics 2006; 1: 53-59. doi:10.1007/s11468-006-9006-7

Nano Biomedicine and Engineering
Pages 165-170
Cite this article:
Grell TA, Paredes E, Das SR, et al. Quantitative Comparison of Protein Surface Coverage on Glass Slides and Silver Island Films in Metal-Enhanced Fluorescence-based Biosensing Applications. Nano Biomedicine and Engineering, 2010, 2(3): 165-170. https://doi.org/10.5101/nbe.v2i3.p165-170

196

Views

5

Downloads

4

Crossref

6

Scopus

Altmetrics

Received: 23 August 2010
Accepted: 22 September 2010
Published: 02 October 2010
© 2010 T.A.G. Grell et al.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return