AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (393.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Electrochemical Property and Cell Toxicity of Gold Electrode Modified by Monolayer PAMAM Encapsulated Gold Nanorods

Xueqing Zhang,Bifeng Pan,Kan WangJing RuanChenchen BaoHao YangRong HeDaxiang Cui( )
Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Note: Xueqing Zhang and Bifeng Pan are equally contributed to this work

Show Author Information

Abstract

Herein we exploit the molecular engineering capability to immobilize monolayer of polyamidoamine dendrimer on gold electrode, which exhibit enhanced charge transfer and biocompatibility. Polyamidoamine (PAMAM generation 5.0) dendrimers were used as template/stabilizers for gold nanoparticle growth, with Au@PAMAM nanoparticles serving as surface modifier to produce monolayer film. TEM, UV-vis spectroscopy, and AFM were used to characterize the formation of monolayer Au@PAMAM on gold surface. The cyclic voltammetry (CV) and Impedance measurements of Au@PAMAM modified gold electrodes demonstrate electrochemistry properties of modified electrode. Furthermore, Au@PAMAM coating can greatly increased the biocompatibility of gold electrode as determined by cell growth curves

References

1

Yang SP, Lin L, Yang L, Chen J.M, Chen Q. Q., Cao D., Yu X. B. The fluorescence of polyamidoamine dendrimers peripherally modified with 1,8-naphthalimide groups: Effect of the rare earth ions and protons. Journal of Luminescence, 2007; 126: 515-530. doi: 10.1016/j.jlumin.2006.10.013

2

Agrawal P, Gupta U., Jain N.K. Glycoconjugated peptide dendrimers-based nanoparticulate system for the deli-very of chloroquine phosphate. Biomaterials, 2007; 28:3349-3359. doi: 10.1016/j.biomaterials.2007.04.004

3

Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, Xu T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. European Journal of Medicinal Chemistry, 2007; 42: 1032-1038.doi: 10.1016/j.ejmech.2006.12.035

4

Joost NHR, Silvia A, Rieko van Heerbeek, Paul CJK, Piet WNM. van Leeuwen. Dendrimers in Catalysis. Advances in Catalysis, Volume 49, 2006, Pages 71-151.

5

Korkosz R J, Gilbertson JD, Prasifka KS, Chandler BD. Dendrimer templates for supported Au catalysts. Catalysis Today, 2007; 122: 370-377.doi: 10.1016/j.cattod.2007.01.047

6

Seib FP, Jones AT, Duncan R. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. Journal of Controlled Release, 2007; 117: 291-300. doi: 10.1016/j.jconrel.2006.10.020

7

Klajnert B, Bryszewska M. Interactions between PAMAM dendrimers and gallic acid molecules studied by spectrofluorimetric methods. Bioelectrochemistry, 2007; 70: 50-52.doi: 10.1016/j.bioelechem.2006.03.027

8

Ma M, Cheng Y, Xu Z, Xu P, Qu H, Fang Y, Xu T, Wen L. Evaluation of polyamidoamine (PAMAM) dendri-mers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. European Journal of Medicinal Chemistry, 2007; 42: 93-98.doi: 10.1016/j.ejmech.2006.07.015

9

Qu R, Niu Y, Sun C, Ji C, Wang C, Cheng G. Syntheses, characterization, and adsorption properties for metal ions of silica-gel functionalized by ester- and amino-terminated dendrimer-like polyamidoamine polymer. Mi-croporous and Mesoporous Materials, 2006; 97: 58-65.doi: 10.1016/j.micromeso.2006.08.007

10

Dai K, Shaw L. Comparison between shot peening and surface nanocrystallization and hardening processes. Materials Science and Engineering: A, 2007; 463: 46-53.doi: 10.1016/j.msea.2006.07.159

11

Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: An analytical study. Journal of Analytical and Applied Pyrolysis, 2007; 80: 24-29.doi: 10.1016/j.jaap.2006.12.025

12

López T, Quintana P, Ortiz-Islas E, Vinogradova E, Manjarrez J, Aguilar DH, Castillo-Ocampo P, Magaña C, Azamar JA. Characterization of sodium phenytoin cogelled with titania for a controlled drug-release system. Materials Characterization, 2007; 58: 823-828.doi: 10.1016/j.matchar.2006.11.006

13

Itoh T, Matsubara I, Shin W, Izu N. Synthesis and characterization of layered organic/inorganic hybrid thin films based on molybdenum trioxide with poly(Nmethylaniline) for VOC sensor. Materials Letters, 2007; 61: 4031-4034.doi: 10.1016/j.matlet.2007.01.012

14

Ryasnyanskiy AI, Palpant B, Debrus S, Pal U, Stepanov A. Third-order nonlinear-optical parameters of gold nanoparticles in different matrices. Journal of Luminescence, 2007; 127: 181-185.doi: 10.1016/j.jlumin.2007.02.021

15

Chandran SP, Ghatak J, Satyam PV, Sastry M. Interfacial deposition of Ag on Au seeds leading to Auco-reAgshell in organic media. Journal of Colloid and Interface Science, 2007; 312: 498-505.doi: 10.1016/j.jcis.2007.03.032

16

Esparza R, Rosas G, López Fuentes M, Sánchez Ramírez J. F., Pal U, Ascencio J. A., Pérez R. Synthesis of gold nanoparticles with different atomistic structural characteristics. Materials Characterization, 2007; 58: 694-700.doi: 10.1016/j.matchar.2006.11.032

17

Zhang L, Li X, Mu J. Self-assembly of porphyrin-based supramolecules and their characteristics on gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007; 302: 219-224.doi: 10.1016/j.colsurfa.2007.02.026

18

Sargentis C, Giannakopoulos K, Travlos A, Tsamakis D. Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 2007; 38: 85-88.doi: 10.1016/j.physe.2006.12.024

19

Du D, Ding J, Cai J, Zhang A. One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design. Journal of Electroanalytical Chemistry, 2007; 605:53-60.doi: 10.1016/j.jelechem.2007.03.013

20

Wang A, Xu J, Zhang Q, Chen H. The use of poly(dimethylsiloxane) surface modification with gold nanopar-ticles for the microchip electrophoresis. Talanta, 2006; 69: 210-215.doi: 10.1016/j.talanta.2005.09.029

21

Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007; 3: 111-119.doi: 10.1016/j.nano.2007.03.005

22

Tomczak N, Vancso JG. Microcontact printed poly (amidoamine) dendrimer monolayers on silicon oxide surface. European Polymer Journal, 2007; 43: 1595-1601.doi: 10.1016/j.eurpolymj.2007.02.027

23

Bliznyuk VN, Baig A, Singamaneni S, Pud AA, Yu KF, Shapoval GS. Effects of surface and volume modification of poly(vinylidene fluoride) by polyaniline on the structure and electrical properties of their composites. Polymer, 2005; 46: 11728-11736.

24

Xu P, Wen X, Zheng Z, Cox G, Zhu H. Two-photon optical characteristics of zinc oxide in bulk, low dimensional and nanoforms. Journal of Luminescence, 2007; 126: 641-643.doi: 10.1016/j.jlumin.2006.10.030

25

Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart F. C., Oliveira J. O. N. Dendrimers as nanoreactors to produce platinum nanoparticles embedded in layer-bylayer films for methanol-tolerant cathodes. Electroc hemistry Communications, 2006; 8: 348-352.doi: 10.1016/j.elecom.2005.12.003

26

Okugaichi A, Torigoe K, Yoshimura T, Esumi K. Interaction of cationic gold nanoparticles and carboxylateterminated poly(amidoamine) dendrimers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006; 273:154-160.doi: 10.1016/j.colsurfa.2005.08.028

27

Joo WJ, Choi TL, Lee SK, Chung Y, Jung MS, Kim JM. Electronically controlled nonvolatile memory device using PAMAM dendrimer. Organic Electronics, 2006; 7: 600-606.doi: 10.1016/j.orgel.2006.10.001

28

Touzani R, Alper H. PAMAM dendrimer-palladium complex catalyzed synthesis of five-, six- or seven membered ring lactones and lactams by cyclocarbonylation methodology. Journal of Molecular Catalysis A: Chemical, 2005; 227: 197-207.doi: 10.1016/j.molcata.2004.10.024

29

Hong MY, Kim YJ, Lee JW, Kim K, Lee JH, Yoo JS, Bae SH, Choi BS, Kim HS. Synthesis and characterization of tri(ethylene oxide)-attached poly(amidoamine) dendrimer layers on gold. Journal of Colloid and Interface Science, 2004; 274: 41-48.doi: 10.1016/j.jcis.2003.11.061

30

He X, Liang H, Pan C. Self-condensing vinyl polymerization in the presence of multifunctional initiator with unequal rate constants: Monte Carlo simulation. Polymer 2003; 44: 6697-6706.doi:10.1016/j.polymer.2003.08.013

Nano Biomedicine and Engineering
Pages 182-188
Cite this article:
Zhang X, Pan B, Wang K, et al. Electrochemical Property and Cell Toxicity of Gold Electrode Modified by Monolayer PAMAM Encapsulated Gold Nanorods. Nano Biomedicine and Engineering, 2010, 2(3): 182-188. https://doi.org/10.5101/nbe.v2i3.p182-188

191

Views

5

Downloads

3

Crossref

14

Scopus

Altmetrics

Received: 16 July 2010
Accepted: 22 September 2010
Published: 04 October 2010
© 2010 X. Zhang et al.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return