AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (651 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Improved visualisation of internalised carbon nanotubes by maximising cell spreading on nanostructured substrates

Chenchen Bao1,Furong Tian2,( )Giovani Estrada3
National Key Laboratory of Nano/Micro Fabrication Technology, Shanghai Jiaotong University, Shanghai 200240, China
Comprehensive Pneumology Centre, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
Institute for Bioinformatics, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany

Chenchen Bao and Furong Tian contributed equally to this work.

Show Author Information

Abstract

The subcellular visualisation of nanomaterials is crucial for a wide range of studies in nanomedicine and nanotoxicology. Although light microscopy usually requires less demanding sample preparation, compared to electron microscopy, it suffers from occlusion and resolution when observing nanoparticles. A main difference in the sample preparation is the reduction of cell’s thickness. Here we propose an improved light microscopy setting in which cells are spread on nanostructured patterns as to minimise their thickness, and at the same time minimise the overlap of nanoparticles themselves. Nanostructured substrates were prepared by depositing functionalised gold-RGD nanodots. We optimise the experimental conditions as to minimise cell’s thickness, which literally flattens the cell for further imaging procedures. The improved conditions are attained when cells reach their maximum spreading, and it is found when the dot-dot distance is 58nm. A threshold mechanism in cell adhesion is explained. When cells are maximally flat, confocal microscopy can easily detect the subcellular location of individual carbon nanotubes. This is a novel imaging concept with many potential applications in nanosciences, especially when a fast, reliable and inexpensive visualisation of nanoparticles is required.

References

[1]

Tian F, Cui D, Schwarz H, Estrada G, Kobayashi H.Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol Vitro. 2006;20:1202-1212.doi:10.1016/j.tiv.2006.03.008

[2]

Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y,et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009;9:3137-3141.doi:10.1021/nl901260b

[3]

Tian F, Prina-Mello A, Estrada G, Beyerle A, Schulz H,et al. A novel assay for the quantification of internalized nanoparticles in macrophages. Nanotoxicology. 2008;2:232-242 doi:10.1080/17435390802504229

[4]

Tian F, Prina-Mello A, Estrada G, Beyerle A, Moeller W, Schulz H,et al. Macrophage Cellular Adaptation, Localization and Imaging of Different Size Polystyrene Particles. Nano Biomed. Eng. 2009;1:13-26.doi:10.5101/nbe.v1i1.p13-26

[5]

Roberts C, Chen C, Mrksich M, Martichonok V, Ingber D, Whitesides G. Using mixed self-assembled monolayers presenting RGD and (EG) 3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J.Am.Chem.Soc.1998;120:6548-6555. doi:10.1021/ja972467o

[6]
Csaderova L, Martines E, Seunarine K, Gadegaard N, Wilkinson C D, Riehle M O. A biodegradable and biocompatible regular nanopattern for large-scale selective cell growth. Small. 2010;6:2755-2761. doi:10.1002smll.201000193
[7]

Tian F, Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Yokoyama Y, Estrada G G, et al. Quantitative analysis of cell adhesion on aligned micro- and nanofibers. J. Biomed. Mater. Res. A. 2008;84:291-299.doi:10.1002/jbm.a.31304

[8]

Dalby M, Silvio L, Harper E, Bonfield W. In vitro adhesion and biocompatability of osteoblast-like cells to poly (methylmethacrylate) and poly (ethylmethacrylate) bone cements. J. Maert. Sci.: Mater. in Med. 2002;13:311-314.doi:10.1023/A:1014071120078

[9]
Curtis A, Gadegaard N, Dalby M, Riehle M, Wilkinson C, Aitchison G. Cells react to nanoscale order and symmetry in their surroundings. NanoBioscience, IEEE Transactions on. 2004;3:61-65
[10]

Lo C M, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys. J. 2000;79:144-152.doi:10.1016/S0006-3495(00)76279-5

[11]

Glass R, Arnold M, Cavalcanti-Adam E, Blümmel J, Haferkemper C, Dodd C,et al. Block copolymer micelle nanolithography on nonconductive substrates. New J. Phys. 2004;6:101.doi:10.1088/1367-2630/6/1/101

[12]

Pucillo C, Colombatti A, Vitale M, Salzano S, Rossi G, Formisano S. Interactions of promonocytic U937 cells with proteins of the extracellular matrix. Immunology.1993;80:248.

[13]

Tian F, Prina-Mello A, Estrada G, Beyerle A, Kreyling W, Stoeger T. Cell shape imaging analysis: A fast and reliable technique for the investigation of internalised carbon nanotubes in flat macrophages J. Phys.:Confer. Series. 2009;151.

[14]

Spatz J, Eibeck P, Mossmer S, Moller M, Kramarenko E, Khalatur P, et al. Order- Disorder Transition in Surface-Induced Nanopattern of Diblock Copolymer Films,Macromolecul es.2000;33:150-157. doi:10.1021/ma990751p

[15]

Spatz J, Chan V, Mößmer S, Kamm F, Plettl A, Ziemann P, et al. A Combined Top–Down/Bottom–Up Approach to the Microscopic Localization of Metallic Nanodots. Adv. Mater. 2002;14:1827-1832. doi:10.1002/adma.200290011

[16]

Kam N, Jessop T, Wender P, Dai H. Nanotube molecular transporters: internalization of carbon nanotube- protein conjugates into mammalian cells. J. Am .Chem. Soc. 2004;126:6850-6851.doi:10.1021/ja0486059

[17]

Pantarotto D, Briand J, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004;2004:16-17.

[18]
Tian F, Prina-Mello A, Estrada G, Beyerle A, Kreyling W, Stoeger T. Cell shape imaging analysis: A fast and reliable technique for the investigation of internalised carbon nanotubes in flat macrophages. IOP Publishing; 2009. p.012033.
[19]

Brandenberger C, Clift MJ, Vanhecke D, Muhlfeld C, Stone V, Gehr P,et al. Intracellular imaging of nanoparticles: is it an elemental mistake to believe what you see? Part Fibre Toxicol. 2010;7:1-6. doi:10.1186/1743-8977-7-15

[20]

Maheshwari G, Brown G, Lauffenburger D, Wells A, Griffith L. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 2000;113:1677-1686.

[21]

Irvine DJ, Hue KA, Mayes AM, Griffith LG. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys. J. 2002;82:120-132.doi:10.1016/S0006-3495(02)75379-4

Nano Biomedicine and Engineering
Pages 201-207
Cite this article:
Bao C, Tian F, Estrada G. Improved visualisation of internalised carbon nanotubes by maximising cell spreading on nanostructured substrates. Nano Biomedicine and Engineering, 2010, 2(4): 201-207. https://doi.org/10.5101/nbe.v2i4.p201-207

378

Views

5

Downloads

7

Crossref

11

Scopus

Altmetrics

Received: 10 November 2010
Accepted: 06 December 2010
Published: 16 December 2010
© 2010 C. Bao, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return