AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (969.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Inter-prismatic matrix structure characterization of mollusk shell and its effect on crystal formation

Dapeng Yang1,2( )Peng Huang1Bifeng Pan3Mo Yang1( )
Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai JiaoTong University, Shanghai, 200240, China
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Departments of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
Show Author Information

Abstract

Mollusk biomineralization is an elaborate process in which cells, organic macromolecules, and calcium carbonate crystals are actively involved. Macromolecules (mainly are proteins and polysaccharide) act as a key role in regulating and limiting the size, orientation, polymorph and texture of inorganic phase. In this work, we focused on the inter-prismatic matrix of mollusk shell combining scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) analytical techniques with CaCO3 recrystallization experiment to characterize its structure and effects on crystal formation. Our results show that the inter-prismatic matrix is not a sort of pure polymer, calcite nano-crystals are also located inside the inter-prismatic matrix. Interestingly, it seems that these nanocrystals have a preferred orientation, which means the inter-prismatic matrix do impose effect on the crystal formation. In vitro re-crystallization experiment using partially dissolved prismatic fragment as template indicates that the (104) faces of CaCO3 micro-crystals are closely associated with the walls of inter-prismatic matrix. Furthermore, a possible growth mechanism of mollusk shell prismatic layer was proposed.

References

[1]

Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford: Oxford University Press; 2001.

[2]

Lowenstam HA, Weiner, S. On Biomineralization, New York: Oxford University Press;1989.

[3]

Sommerdijk NAJM, With Gd. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev. 2008; 108:4499-4550. doi:10.1021/cr078259o

[4]

Spencer Evans J. “Tuning in” to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic-organic composites. Chem. Rev. 2008;108:4455-4462.doi:10.1021/cr078251e

[5]

Meldrum F C, Cölfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008;108:4332-4432.doi:10.1021/cr8002856

[6]

Oaki Y, Imai H. The hierarchical architecture of nacre and its mimetic material. Angew. Chem., Int. Ed. 2005;44:6571-6575. doi:10.1002/anie.200500338

[7]

Yu S H. Bio-inspired crystal growth by synthetic templates.Top. Curr. Chem. 2007;271:79-118. doi:10.1007/128_070

[8]

Fricke M, Volkmer D. Crystallization of calcium carbonate beneath insolube monolayers: suitable models of mineral-matrix interactions in biomineralization? Top. Curr. Chem.2007;270: 1-41. doi:10.1007/128_063

[9]

Meldrum FC. Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 2003;48:187-224.doi:10.1179/095066003225005836

[10]

Pokroy B, Zolotoyabko E. Microstructure of natural plywoodlike ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction. J. Mater. Chem. 2003;13:682-688. doi:10.1039/b300167a

[11]

Xie L, Wang XX, Li J. The SEM and TEM study on the laminated structure of individual aragonitic nacre tablet in freshwater bivalve H.cumingii Lea shell. J. Struct. Biol. 2010; 169:89-94. doi:10.1016/j.jsb.2009.09.002

[12]

Nudelman F, Shimoni E, Klein E, Rousseau M, Bourrat X, Lopez E, et al. Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: An environmental- and cryo-scanning electron microscopy study. J. Struct. Biol. 2008;162:290-300. doi:10.1016/j.jsb.2008.01.008

[13]

Kudo M, Kameda J, Saruwatari K, Ozaki N, Okano K, Nagasawa H, et al. Microtexture of larval shell of oyster, Crassostrea nippona: a FIB-TEM study. J. Struct. Biol.2010; 169:1-5. doi:10.1016/j.jsb.2009.07.014

[14]

Li XD, Chang WC, Chao YJ, Wang R, Chang M. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone. Nano Lett. 2004;4:613-617. doi:10.1021/nl049962k

[15]

Addadi L, Joester D, Nudelman F, Weiner S. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem.-Eur. J. 2006;12:980-987. doi:10.1002/chem.200500980617.

[16]

Addadi L, Weiner S. A pavement of pearl. Nature.1997, 389, 912-5. doi:10.1038/40010

[17]

Marin F, Pokroy B, Luquet G, Layrolle P, Groot KD. Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials. 2007;28:2368-2377.doi:10.1016/j.biomaterials.2007.01.029

[18]

Checa AG, Rodríguez-Navarro AB, Esteban Delgado FJ. The nature and formation of calcitic columnar prismatic shell layers in periomorphian bivalves. Biomaterials. 2005;26:6404-6414. doi:10.1016/j.biomaterials.2005.04.016

[19]

Schäffer T E, Ionescu-Zanetti C, Proksch R, Fritz M, Walters D A, Almqvist N, et al. Does abalone nacer form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 1997;9:1731-1740. doi:10.1021/cm960429i

[20]

Nudelman F, Chen HH, Goldberg HA, Weiner S, Addadi L. Lessons from biomineralizaiton: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Faraday. Discussions.2007;136:9-25.doi:10.1039/b704418f

[21]

Checa AG, Rodríguez-Navarro AB. Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca).Biomaterials. 2005;26:1071-1079. doi:10.1016/j.biomaterials.2004.04.007

[22]

Rousseau M, Meibom A, Gèze M, Bourrat X, Angellier M, Lopez E. Dynamics of sheet nacre formation in bivalves. J. Struct. Biol.2009;165:190-195. doi:10.1016/j.jsb.2008.11.011

[23]

Yu-Min Lin A, Chen PY, Meyers MA. The growth of nacre in the abalone shell. Acta. Biomaterialia. 2008;4:131-138.doi:10.1016/j.actbio.2007.05.005

[24]

Falini G, Albeck, S, Weiner S, Addadi L. Control of aragonite or calcite polymorphism by mollusk shel macromolecules. Science.1996;271:67-69. doi:10.1126/science.271.5245.67

[25]

Metzler R A, Evans J S, Killian C E, Zhou D, Churchill T H, Appathurai N P, et al. Nacre Protein Fragment Templates Lamellar Aragonite Growth. J. Am. Chem. Soc. 2010;132:6329-6334.doi:10.1021/ja909735y

[26]

Albeck S, Aizenberg J, Addadi L, Weiner S. Interactions of various skeletal intracrystalline components with calcite crystals. J. Am. Chem. Soc.1993;115:11691-11697. doi:10.1021/ja00078a005

[27]

Belcher A M, Wu X H, Christensen R J, Hansma P K, Stucky G D, Morse D E. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature. 1996; 381:56-58. doi:10.1038/381056a0

[28]

Takeuchi T, Sarashina I, Iijima M, Endo K. In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS. Lett. 2008;582:591-596. doi:10.1016/j.febslet.2008.01.026

[29]

Cusack M, Pérez-Huerta A, Dalbeck P. Common crystallographic control in calcite biomineralization of bivalved shells. Cryst. Eng. Comm. 2007;9:1215-1218. doi:10.1039/b708795k

[30]

Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. U. S. A 1996;93:9657-9560. doi:10.1073/pnas.93.18.9657

[31]

Westbroek P, Marin F. A marriage of bone and nacre. Nature. 1998;392:861-362.doi:10.1038/31798

[32]

Dauphin Y. Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves: pinna nobilis and pinctada margartifera. J. Biol. Chem. 2003;278:15168-15177. doi:10.1074/jbc.M204375200

[33]

Bezares J, Asaro R, Hawley M. Macromolecular structure of the organic framework of nacre in Haliotis rufescens:Implications for growth and mechanical behavior. J. Struct. Biol. 2008; 163:61-75. doi:10.1016/j.jsb.2008.04.009

[34]

Sudo S, Fujikawa T, Nagakura T, Ohkubo, Sakaguchi K, Tanaka M, et al. Structures of mollusc shell framework proteins. Nature.1997;387:563-564. doi:10.1038/42391

[35]

Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, et al. Caspartin and Calprismin, two proteins of the shell calcitic prisms of the mediterranean fan mussel pinna nobilis. J. Biol. Chem. 2005;280:33895-33908. doi:10.1074/jbc.M506526200

[36]

Tsukamoto D, Sarashina I, Endo K. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem. Bioph. Res. Co. 2004;320:1175-1180. doi:10.1016/j.bbrc.2004.06.072

[37]

Kong Y W, Yan Z G, Li C Z, Gong N P, Zhu F J, Li D X, et al. Cloning and characterization of prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster pinctada fucata. J. Biol. Chem. 2009;284:10841-10854. doi:10.1074/jbc.M808357200

[38]

Marin F, Corstjens P, Gaulejac B D, Vrind-De Jong E D, Westbroek P. Mucins and molluscan calcification.J.Biol. Chem. 2000;275:20667-20675. doi:10.1074/jbc.M003006200

[39]

Dauphin Y, Cuif J P, Doucet J, Salomé M, Susini J, Williams C T. In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge. Marine. Biology. 2003;142: 299-304. doi:10.1007/s00227-002-0950-2

[40]

Raz S, Hamilton P C, Wilt F H, Weiner S and Addadi L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater. 2003;13:480-486. doi:10.1002/adfm.200304285

[41]

Wirth R. Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geology. 2009;261:217-229. doi:10.1016/j.chemgeo.2008.05.019

[42]

Velázquez-Castillo R R, Reyes-Gasga J, García-Gutierrez D I, Jose-Yacaman M. Crystal structure characterization of nautilus shell at different length scales. Biomaterials. 2006; 27: 4508-4517. doi:10.1016/j.biomaterials.2006.04.003

[43]

Mann S. Molecular recognition in biomineralization. Nature. 1988;332:119-124. doi:10.1038/332119a0

[44]

Weiner S, Addadi L. Design strategies in mineralized biological materials. J. Mater. Chem.1997;7:689-702.doi:10.1039/a604512j

[45]

Gower LB. Biomimetic model systems for investigating the amorphous precursorpathway and its role in biomineralization Chem. Rev 2008;108:4551-4627. doi:10.1021/cr800443h

Nano Biomedicine and Engineering
Pages 218-224
Cite this article:
Yang D, Huang P, Pan B, et al. Inter-prismatic matrix structure characterization of mollusk shell and its effect on crystal formation. Nano Biomedicine and Engineering, 2010, 2(4): 218-224. https://doi.org/10.5101/nbe.v2i4.p218-224

384

Views

5

Downloads

2

Crossref

1

Scopus

Altmetrics

Received: 10 November 2010
Accepted: 06 December 2010
Published: 16 December 2010
© 2010 D. Yang, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return