AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (788.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Synergetic Antibacterial Effects of Silver Nanoparticles@Aloe Vera Prepared via a Green Method

Yixia Zhang( )Dapeng Yang( )Yifei KongXiansong WangOmar PandoliGuo Gao
Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
Show Author Information

Abstract

Aloe Vera-conjugated Ag nanoparticles (AgNPs@AV hybrids) are synthesized in large quantities by reducing silver nitrate with Aloe Vera pulp extract at room temperature. TEM image reveals that these NPs are predominantly spherical with an average of 25 nm in diameter. The crystal structure of AgNPs@AV is determined by XRD. The cytotoxicity of AgNPs@AV hybrids is detected by carrying out the cell viability measurement on Human Dermal Fibroblasts (HDF) cells, the results show that no obvious cytotoxicity is observed. Compared with Vera gel and Ag NPs (washed from Vera gel) alone, AgNPs@AV hybrids possess more excellent antibacterial activity on E. coli even at very low concentration.

References

[1]

Yang, D.; Cui, D., Advances and prospects of gold nanorods. Chem.- Asian J. 2008, 3 (12), 2010-2022. doi:10.1002/asia.200800195

[2]

Panyam, J.; Labhasetwar, V., Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Delivery Rev. 2003, 55 (3), 329-347. doi:10.1016/S0169-409X(02)00228-4

[3]

Park, J.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.; Sailor, M., Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8 (4), 331-336. doi:10.1038/nmat2398

[4]

Uludag, Y.; Tothill, I., Development of a Sensitive Detection method of Cancer Biomarkers in Human Serum (75%) using a Quartz Crystal Microbalance Sensor and Nanoparticles amplification system. Talanta 2010, 82, 277-282. doi:10.1016/j.talanta.2010.04.034

[5]

Sanpui, P.; Murugadoss, A.; Prasad, P.; Ghosh, S.; Chattopadhyay, A., The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int. J. Food Microbiol. 2008, 124 (2), 142-146. doi:10.1016/j.ijfoodmicro.2008.03.004

[6]

Cho, K.; Park, J.; Osaka, T.; Park, S., The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 2005, 51 (5), 956-960. doi:10.1016/j.electacta.2005.04.071

[7]

Kvitek, L.; Panac ek, A.; Soukupova, J.; Kolar, M.; Vec erova, R.; Prucek, R.; Holecova, M.; Zboril, R., Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112 (15), 5825-5834. doi:10.1021/jp711616v

[8]

Stoimenov, P.; Klinger, R.; Marchin, G.; Klabunde, K., Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18 (17), 6679-6686. doi:10.1021/la0202374

[9]

Xie, J.; Lee, J.; Wang, D.; Ting, Y., Silver nanoplates: from biological to biomimetic synthesis. ACS nano 2007, 1 (5), 429-439. doi:10.1021/nn7000883

[10]

N, M.; Nadagouda; S, R.; Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008, 10 (8), 859-862. doi:10.1039/b804703k

[11]

Yang, D.; Chen, S.; Huang, P.; Wang, X.; Jiang, W.; Pandoli, O.; Cui, D., Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem. 2010, 12, 2038-2042. doi:10.1039/c0gc00431f

[12]

Huang P, Kong Y, Li Z, Gao F, Cui D. Copper selenide nanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization. Nanoscale Res. Lett. 2010, 5(6), 949-956. doi:10.1007/s11671-010-9587-0.

[13]

Huang P, Li Z, Hu H, Cui D. Synthesis and Characterization of Bovine Serum Albumin-conjugated Copper Sulfide Nanocomposites. J. Nanomater. 2010, doi:10.1155/2010/641545.

[14]
Huang P, Bao L, Yang D, Gao G, Lin J, Li Z, et al. Protein-directed solution-phase green synthesis of BSA-conjugated MxSey (M=Ag, Cd, Pb, Cu) nanomaterials. Chem Asian J. In press.
[15]

Shankar, S.; Ahmad, A.; Pasricha, R.; Sastry, M., Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 2003, 13 (7), 1822-1826. doi:10.1039/b303808b

[16]

Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.; Khan, M.; Parishcha, R.; Ajaykumar, P.; Alam, M.; Kumar, R., Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001, 1 (10), 515-519. doi:10.1021/nl0155274

[17]

Kong, Y.; Chen, J.; Gao, F.; Li, W.; Xu, X.; Pandoli, O.; Yang, H.; Ji, J.; Cui, D., A Multifunctional Ribonuclease©\A©\Conjugated CdTe Quantum Dot Cluster Nanosystem for Synchronous Cancer Imaging and Therapy. Small 2010, 6 (21), 2367–2373. doi:10.1002/smll.201001050

[18]

Kong, Y.; Gao, F.; He, R.; Chen, J.; Xu, X.; Li, N.; Cui, D., Bio-inspired synthesis of bovine serum albumin conjugated Ag2Se/Se core/shell heterostructure nanoparticles at room temperature. Curr. Nanosci. 2010, 6, 446.

[19]

Shankar, S.; Ahmad, A.; Sastry, M., Geranium leaf assisted bio-synthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19 (6), 1627-1631. doi:10.1021/bp034070w

[20]

Zawahry, M.; Hegazy, M.; Helal, M., Use of aloe iim treating leg ulcers and dermatoses. Int. J. Dermatol. 1973, 12 (1), 68-73. doi:10.1111/j.1365-4362.1973.tb00215.x

[21]

Vogler, B.; Ernst, E., Aloe vera: a systematic review of its clinical effectiveness. Br. J. General Pract. 1999, 49 (447), 823.

[22]

Agarry, O.; Olaleye, M.; Bello-Michael, C., Comparative antimicrobial activities of aloe vera gel and leaf. Afr. J. Biotechnol. 2005, 4 (12), 1413-1414.

[23]
CA, N.; LA, A.; D, P. J., Herbal Medicines: A guide for health-care for health-care professionals. 1996, 296.
[24]

Davis, R.; Donato, J.; Hartman, G.; Haas, R., Anti-inflammatory and wound healing activity of a growth substance in Aloe vera. J. Am. Podiatr. Med. Assoc. 1994, 84 (2), 77-81.

[25]

Vazquez, B.; Avila, G.; Segura, D.; Escalante, B., Antiinflammatory activity of extracts from Aloe Vera gel. J. Ethnopharmacol. 1996, 55, 69-75. doi:10.1016/S0378-8741(96)01476-6

[26]

Feng, Q.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., Part A 2000, 52 (4), 662-668. doi:10.1002/1097-4636(20001215)52:4<662::AIDJBM10>3.0.CO;2-3

[27]

Chandran, S.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using aloevera plant extract. Biotechnol. Prog. 2006, 22 (2), 577-583. doi:10.1021/bp0501423

[28]

Philip, D., Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta, Part A 2009, 73 (2), 374-381. doi:10.1016/j.saa.2009.02.037

[29]

Kannan, P.; John, S., Synthesis of mercaptothiadiazole-nctionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology 2008, 19, 085602. doi:10.1088/0957-484/19/8/085602

[30]

Hart, L.; Van den Berg, A.; Kuis, L.; Van Dijk, H.; Labadie, R., An anti-complementary polysaccharide with immunological adjuvant activity from the leaf parenchyma gel of Aloe vera. Planta Med. 1989, 55 (6), 509-512.

[31]

Marambio-Jones, C.; Hoek, E., A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12 (5), 1531-1551. doi:10.1007/s11051-010-9900-y

[32]

Pal, S.; Tak, Y.; Song, J., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. microbiol. 2007, 73 (6), 1712–1720. doi:10.1128/AEM.02218-06

[33]

Fly, L.; Kiem, I., Tests of Aloe vera for antibiotic activity. Economic Botany 1963, 17 (1), 46-49. doi:10.1007/BF02985352

[34]

Paes-Leme, A.; Motta, E.; De Mattos, J.; Dantas, F.; Bezerra, R.; Caldeira-de-Araujo, A., Assessment of Aloe vera (L.) genotoxic potential on Escherichia coli and plasmid DNA. J. Ethnopharmacol. 2005, 102 (2), 197-201. doi:10.1016/j.jep.2005.06.013

[35]

Gogoi, S.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S.; Chattopadhyay, A., Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 2006, 22 (22), 9322-9328. doi:10.1021/la060661v

[36]

Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Juan B Kouri4, The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346–2353. doi:10.1088/0957-448 4/16/10/059

Nano Biomedicine and Engineering
Pages 252-257
Cite this article:
Zhang Y, Yang D, Kong Y, et al. Synergetic Antibacterial Effects of Silver Nanoparticles@Aloe Vera Prepared via a Green Method. Nano Biomedicine and Engineering, 2010, 2(4): 252-257. https://doi.org/10.5101/nbe.v2i4.p252-257

836

Views

19

Downloads

52

Crossref

92

Scopus

Altmetrics

Received: 15 November 2010
Accepted: 06 December 2010
Published: 16 December 2010
© 2010 Y. Zhang et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return