AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (750.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Optical properties and catalytic activity of bimetallic gold-silver nanoparticles

Lili Feng( )Guo GaoPeng HuangKan WangXiansong WangTeng LuoChunlei Zhang
Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, National Key Laboratory of Micro/Nano Fabrication Technology,Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai,200240, P. R. China
Show Author Information

Abstract

Gold-silver bimetallic nanoparticles (including alloy, core-shell and nanocage structure) are good noble metal nanomaterials with unique properties which have widespread applications in electronic, photonic, chemical and biological fields. Especially in recent years, more and more investigators are motivating this advanced material rapidly towards surface-enhanced raman scattering (SERS) and high catalytic activity of carbon monoxide oxidation at room temperature. Herein, we outlined the current research advances of gold-silver bimetallic nanoparticles in synthesis, optical properties, surface-enhanced raman scattering application and catalytic activity, with the aim of stimulating more research to achieve more useful application as soon as possible.

References

[1]

Maier S A, Brongersma M L Kik PG, Meltzer S, Requicha A A G, Atwater H A. Plasmonics - A route to nanoscale optical devices. Adv. Mater. 2001;13:1501-1505. doi:10.1002/1521-4095(200110)13:19<1501:AID-ADMA1501>3.0.CO;2-Z

[2]

Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D.Nanoribbon waveguides for subwavelength photonics integration. Science 2004;305:1269-1273. doi:10.1126/science.1100999

[3]

Murphy C J, Gole A M, Hunyadi S E, Stone J W, Sisco P N, Alkilany A, Kinard B E, Hankins P., Chemical sensing and imaging with metallic nanorods. Chem. Commun. 2008;5:544-557. doi:10.1039/b711069c

[4]

Mohamed M B, Volkov V, Link S, El-Sayed M A. The 'lightning' gold nanorods: fluorescnce enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 2000;317 :517-523. doi:10.1016/S0009-2614(99)01414-1

[5]

Dapeng Yang, Daxiang Cui, Advances and Prospects of Gold Nanorods. Chem.-Asian J. 2008;3:2010-2022. doi:10.1002/asia.200800195

[6]

Li C Z, Male K B, Hrapovic S, Luong J H T. Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem. Commun. 2005;313924-3926.doi:10.1039/b504186d

[7]

Orendorff C J, Gearheart L, Jana N R, Murphy C J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem.Phys. 2006;8:165-170. doi:10.1039/b512573a

[8]

Zhao D, Xu B Q. Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew. Chem.-Int. Edit. 2006;45:4955-4959.doi:10.1002/anie.200600155

[9]

Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem.-Int. Edit. 2006;45 :7824-7828. doi:10.1002/anie.200603068

[10]

Narayanan R, El-Sayed M A. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electron-transfer reaction. J. Am. Chem. Soc. 2004;126:7194-7195. doi:10.1021/ja0486061

[11]

Wang A Q, Chang C M, Mou C Y. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys. Chem. B 2005;109:18860-18867. doi:10.1021/jp051530q

[12]

Eghtedari M, Oraevsky A, Copland J A, Kotov N A, Conjusteau A, Conjusteau A, Motamedi M. High sensitivity ofsensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007;7:1914-1918.doi:10.1021/nl070557d

[13]

Wiley B J, Wang Z H, Wei J, Yin Y D, Cobden D H, Xia Y N. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 2006;6:2273-2278 doi:10.1021/nl061705n

[14]

Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005; 5:709-711.doi:10.1021/nl050127s

[15]

Eustis S, El-Sayed M A. Why goldnanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006;35:209-217 doi:10.1039/b514191e

[16]

Ferrando R, Jellinek J, Johnston R L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008; 108:845-910.doi:10.1021/cr040090g

[17]

Herricks T, Chen J Y, Xia Y N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett. 2004;4:2367-2371. doi:10.1021/nl048570a

[18]

Lee K S, El-Sayed M A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal anorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 2005;109:20331-20338. doi:10.1021/jp054385p

[19]

Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, andmetal composition. J. Phys. Chem. B 2006; 110: 19220-19225. doi:10.1021/jp062536y

[20]

Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B. 1999;103:3073-3077.doi:10.1021/jp990183f

[21]

Liz-Marzan L M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006; 2:32-41.doi:10.1021/la0513353

[22]

Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett.2005; 5:2034-2038. doi:10.1021/nl0515753

[23]

Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007;2:435-440. doi:10.1038/nnano.2007.189

[24]

Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem.-Eur. J. 2005;11: 454-463.doi:10.1002/chem.200400927

[25]

Xiong Y J, Wiley B, Chen J Y, Li Z Y, Yin Y D, Xia Y N. Corrosion-based synthesis of single-crystalPd nanoboxes and nanocagesand their surface plasmon properties. Angew. Chem.-Int. Edit. 2005;44: 7913-7917.doi:10.1002/anie.200502722

[26]

Sun Y G, Xia Y A. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 2003;3:1569-1572. doi:10.1021/nl034765r

[27]

Zhang Q B, Lee J Y, Yang J, Boothroyd C, Zhang J X. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions. Nanotechnology. 2007;18:245605.doi:10.1088/0957-4484/18/24/245605

[28]

Lu X M, Au L, McLellan J, Li Z Y, Marquez M, Xia Y N, Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxeswith an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007; 7:1764-1769. doi:10.1021/nl070838l

[29]

Chen J Y, Wiley B, McLellan J, Xiong Y J, Li Z Y, Xia Y N. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005;5: 2058-2062. doi:10.1021/nl051652u

[30]

Chandran S P, Ghatak J, Satyam P V, Sastry M. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media. J. Coll. Inter. Sci. 2007;312 : 498-505. doi:10.1016/j.jcis.2007.03.032

[31]

Yang J, Lee J Y, Too H P. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium. J. Phys. Chem. B 2005; 109:19208-19212.doi:10.1021/jp052242x

[32]

Henglein A. Reduction of Ag(CN)(2)(-) on silverand platinum colloidal nanoparticles. Langmuir. 2001;17:2329-2333. doi:10.1021/la001081f

[33]

Lu L H, Wang H S, Xi S Q, Zhang H J. Improved size control of large palladium nanoparticles by a seeding growth method. J. Mater. Chem. 2002;12:156-158.doi:10.1039/b109797k

[34]

Watanabe K, Menzel D, Nilius N, Freund H J. Photochemistry on metal nanoparticles. Chem. Rev. 2006;106:4301-4320. doi:10.1021/cr050167g

[35]

Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum- size-related properties, and applicationstoward biology, catalysis, nanotechnology. Chem. Rev. 2004; 104:293-346. doi:10.1021/cr030698+

[36]

Bonnemann H, Richards R M. Nanoscopic metal particles-Synthetic methods and potential applications. Eur. J. Inorg. Chem. 2001; 10:2455-2480.doi:10.1002/1099-0682(200109)2001:10<2455::AIDEJIC2455>3.0.CO;2-Z

[37]

Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 2008;130:6949-6950.doi:10.1021/ja801566d

[38]

Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 1998;22:1179-1201 doi:10.1039/a805753b

[39]

Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996;12:788-800. doi:10.1021/la9502711

[40]

Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008;7:333-338. doi:10.1038/nmat2156

[41]

Toshima N, Shiraishi Y, Shiotsuki A, Ikenaga D, Wang Y. Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D.2001;16:209-212. doi:10.1007/s100530170094

[42]

Hu J W, Li J F, Ren B, Wu D Y, Sun S G, Tian Z Q. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 2007;111:1105-1112.doi:10.1021/jp0652906

[43]

Cui Y, Ren B, Yao J L, Gu R A, Tian Z Q.Synthesis of Agcore Aushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J. Phys. Chem. B 2006;110:4002-4006. doi:10.1021/jp056203x

[44]

Link S, Wang Z L, El-Sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 1999;103:3529-3533. doi:10.1021/jp990387w

[45]

Mallin M P, Murphy C J. Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett. 2002;2:1235-1237. doi:10.1021/nl025774n

[46]

Pal A, Shah S, Devi S. Synthesis of Au, Ag and Au-Ag alloy nanoparticles in aqueous polymer solution. Coll. Surf. A-Phys. Eng. Asp. 2007;302: 51-57.

[47]

Mallik K, Mandal M, Pradhan N, Pal T. Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of "core-shell" stype tructures. Nano Lett. 2001;1:319-322.doi:10.1021/nl0100264

[48]

Luis M, Liz-Marzan A P P. Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers. J. Phys. Chem. 1995;99:15120-15128.doi:10.1021/j100041a031

[49]

.Haruta A. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003; 3 :75-87. doi:10.1002/tcr.10053

[50]

Hakkinen H, Abbet W, Sanchez A, Heiz U, Landman U.Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew. Chem.-Int. Edit. 2003;42:1297-1300.doi:10.1002/anie.200390334

[51]

Iizuka Y, Kawamoto A, Akita K, Date M, Tsubota S, Okumura M, Haruta M. Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation. Catal. Lett. 2004; 97:203-208. doi:10.1023/B:CATL.0000038585.12878.9a

[52]

Liu J H, Wang A Q, Chi Y S, Lin H P, Mou C Y. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 2005; 109:40-43.doi:10.1021/jp044938g

[53]

Wang A Q, Liu J H, Lin S D, Lin T S, Mou C Y. A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization. J. Catal. 2005;233:186-197. doi:10.1016/j.jcat.2005.04.028

[54]

Chang C M, Cheng C, Wei C M. CO oxidation on unsupported Au-55, Ag-55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008;128:124710.doi:10.1063/1.2841364

[55]

Wang A Q, Hsieh Y, Chen Y F, Mou C Y. Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. J. Catal. 2006;237:197-206. doi:10.1016/j.jcat.2005.10.030

[56]

Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S Nishio M. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Cryst. Growth Des. 2006;6:1801-1807.doi:10.1021/cg060103e

[57]

Mandal M, Jana N R, Kundu S, Ghosh S K, Panigrahi M, Pal T. Synthesis of Au-core-Ag-shell type bimetallic nanoparticles for single molecule detection in solution by SERS method. J. Nanopart. Res. 2004;6:53-61.doi:10.1023/B:NANO.0000023227.17871.0f

[58]

Xiang Y J, Wu X C, Liu D F, Li Z Y, Chu W G, Feng L L, Zhang K, Zhou W Y, Xie S S. Gold nanorod-seeded growth of silver nanostructures:From homogeneous coating to anisotropic coating. Langmuir. 2008;24:3465-3470. doi:10.1021/la702999c

[59]

Park K, Vaia R A, Synthesis of Complex Au/Ag Nanorods by Controlled Overgrowth. Adv. Mater. 2008;20:3882-3887.doi:10.1002/adma.200800613

[60]

Huang C C, Yang Z S, Chang H T, Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir.2004;20:6089-6092.doi:10.1021/la048791w

[61]

Liu M Z, Guyot-Sionnest P, Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 2004;108:5882-5888. doi:10.1021/jp037644o

[62]

Kim K, Kim K, Lee S J.Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy. Chem. Phys. Lett. 2005;403:77-82. doi:10.1016/j.cplett.2004.12.025

[63]

Peng Z Q, Spliethoff B, Tesche B, Walther T, Kleinermanns K. Laser-assisted synthesis of Au-Ag alloy nanoparticles insolution. J. Phys. Chem. B 2006;110:2549-2554.doi:10.1021/jp056677w

[64]

Raveendran P, Fu J, Wallen S L. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 2006;8:34-38. doi:10.1039/b512540e

[65]

Wang W X, Huang Y P, Chen Q F, Xu S K, Yang D Z. Synthesis and absorption spectra properties of Au-Ag alloy nanoparticles using gallic acid as reductant. Spectrosc. Spectral Anal. 2008;28:1726-1729.

[66]

Shin Y, Bae I T, Arey B W, Exarhos G J. Facile stabilization of goldsilver alloy nanoparticles on cellulose nanocrystal. J. Phys. Chem. C 2008;112: 4844-4848. doi:10.1021/jp710767w

[67]

Chen D H, Chen C J. Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem. 2002;12:1557-1562.doi:10.1039/b110749f

[68]

Kim K, Kim K L, Choi J Y, Lee H B, Shin K S, Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface-Enhanced Raman Scattering of 2, 6-Dimethylphenyl Isocyanide. J. Phys. Chem. C 2010;114: 3448-3453. doi:10.1021/jp9112624

[69]

Zeng J, Zhang Q, Chen J Y, Xia Y N. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010;10:30-35. doi:10.1021/nl903062e

[70]

Skrabalak S E, Chen J Y, Sun Y G, Lu X M, Au L, Cobley C M, Xia Y N. Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res. 2008;41:1587-1595.doi:10.1021/ar800018v

[71]

Chen J Y, Glaus C, Laforest R, Zhang Q, Yang M X, Gidding M, Welch M J, Xia Y N. Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small. 2010;6:811-817. doi:10.1002/small.200902216

[72]

Au L, Zhang Q, Cobley C M, Gidding M, Schwartz A G, Chen J Y, Xia Y N. Quantifying the Cellular Uptake of Antibody-Conjugated Au Nanocages by Two-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry. Acs Nano 2010;4:35-42.dio:10.1021/nn9 01392m

[73]

Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G, Wang L H V, Xia Y N. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009;8:935-939. doi:10.1038/nmat2564

[74]

Sanchez-Ramirez J F, Pal U, Nolasco-Hernandez L, Mendoza-Alvarez J, Pescador-Rojas J A.Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition. J. Nanomater. 2008;620412.

[75]

Kariuki N N, Luo J, Maye M M, Hassan S A, Menard T, Naslund H R, Lin Y H, Wang C M, Engelhard M H, Composition- controlled synthesis of bimetallic gold-silver nanoparticles. Langmuir. 2004;20: 11240-11246. doi:10.1021/la048438q

[76]

Lizmarzan L M, Philipse A P.Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers. J. Chem. Phys. 1995;99:15120-15128.doi:10.1021/j100041a031

[77]

Han S W, Kim Y, Kim K, Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Coll. Int. Sci. 1998;208: 272-278.doi:10.1006/jcis.1998.5812

[78]

Devarajan S, Vimalan B, Sampath S. Phase transfer of Au-Ag alloy nanoparticles from aqueous medium to an organic solvent:effect of aging of surfactant on the formation of Ag-rich alloy compositions. J. Coll. Int. Sci. 2004;278:126-132. doi:10.1016/j.jcis.2004.05.038

[79]

Pal A, Shah S, Devi S. Preparation of silver-gold alloy nanoparticles at higher concentration using sodium dodecyl sulfate. Aust. J. Chem. 2008;61:66-71.doi:10.1071/CH07165

[80]

Chen Y H, Yeh C S, A new approach for the formation of alloy nanoparticles: laser synthesis of gold-silver alloy from gold-silver colloidal mixtures. Chem. Commun. 2001;4:371-372. doi:10.1039/b009854j

[81]

Lee I, Han S W, Kim K. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun. 2001;18:1782-1783. doi:10.1039/b009854j

[82]

He W W, Wu X C, Liu J B, Zhang K, Chu W G, Feng L L, Hu X A, Zhou W Y, Xie S S. Pt-Guided Formation of Pt-Ag Alloy Nanoislands on Au Nanorods and Improved Methanol Electro-Oxidation. J. Phys. Chem. C 2009;113:10505-10510. dio:10.1021/ jp9027707

[83]

Zemichael F W, Al-Musa A, Cumming I W, Hellgardt K. Propene partial oxidation over Au-Ag Alloy and Ag catalysts using electrochemical oxygen. Solid State Ionics. 2008;179:1401-1404.

[84]

Yen C W, Mahmoud M A, El-Sayed M A, Photocatalysis in Gold Nanocage Nanoreactors. J. Phys. Chem. A 2009;113:4340-4345. doi:10.1021/jp811014u

[85]

Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275:1102-1106:1102-1106. doi:10.1126/science.275.5303.1102

[86]

Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Agnanocrystals. J. Am. Chem. Soc. 999;121:9932-9939. doi:10.1021/ja992128q

[87]

Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998;27:241-250. doi:10.1039/a827241z

[88]

Sajanlal P R, Pradeep T. Bimetallic Mesoflowers: Region-Specific Overgrowth andSubstrate Dependent Surface-Enhanced Raman Scattering at Single Particle Level. Langmuir. 2010;26:8901-8907. doi:10.1021/la904676u

[89]

Wang Y L, Chen H J, Dong S J, Wang E K.Surface-enhanced Raman scattering of silver-gold bimetallic bimetallic nanostructures with hollow interiors. J. Chem. Phys. 2006;125:044710.doi:10.1063/1.2216694

[90]

Gellner M, Kustner B, Schlucker S. Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vib. Spectrosc. 2009; 50:43-47.doi:10.1016/j.vibspec.2008.07.011

[91]

Srnova-Sloufova I, Vlckova B, Bastl Z, Hasslett T L. Bimetallic (Ag)Au nanoparticles prepared by the seed growth method:Two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth. Langmuir 2004; 20:3407-3415.doi:10.1021/la0302605

[92]

Olson T Y, Schwartzberg A M, Orme C A, Talley C E, O'Connell B, Zhang J Z. Hollow gold-silver double-shell nanospheres: Structure, optical absorption, and surface-enhanced Raman scattering. J. Phys. Chem. C 2008;112:6319-6329.doi:10.1021/jp7116714

Nano Biomedicine and Engineering
Pages 258-267
Cite this article:
Feng L, Gao G, Huang P, et al. Optical properties and catalytic activity of bimetallic gold-silver nanoparticles. Nano Biomedicine and Engineering, 2010, 2(4): 258-267. https://doi.org/10.5101/nbe.v2i4.p258-267

417

Views

24

Downloads

47

Crossref

57

Scopus

Altmetrics

Received: 15 November 2010
Accepted: 06 December 2010
Published: 16 December 2010
© 2010 L. Feng, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return