AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (729.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Effects of Silver Nanowires on The Electrochemical Performance of LiFePO4

Dapeng Chen1,2Gang Zhu1Xingong Zhu1Xueliang Qiao2( )Jianguo Chen2
Wuhan Institute of Marine Electric Propulsion, CSIC, Wuhan, 430064, Hubei, P.R. China
State Key Laboratory of Plastic Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P.R. China
Show Author Information

Abstract

Lithium iron phosphate (LiFePO4) is a promising cathode material for lithium-ion batteries. However, an important drawback of this material is its poor conductivity. In this approach, a simple approach is firstly proposed to enhance the conductivity of LiFePO4 cathodes by dispersing conductive Ag nanowires to these cathodes. LiFePO4/Ag nanowires composite cathodes were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FSEM), and their electrochemical performance were evaluated by charge/discharge tests. It is demonstrated that the capacity and rate capability of LiFePO4/Ag nanowires composite cathodes can be improved considerably by the addition of Ag nanowires. Especially, discharge capacities are improved from ~110 mAh g-1 of LiFePO4 cathodes to ~150 mAh g-1 for LiFePO4/Ag nanowires composite cathodes at 0.2 C. Therefore, LiFePO4/Ag nanowires cathodes can be used as an attractive positive electrode candidate for lithium-ion batteries.

References

1

Feng JK, Ai XP, Cao YL, Yang HX. A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries. Electrochem. Commun. 2007; 9: 25-30. doi:10.1016/j.elecom.2006.08.033.

2

Jin EM, Jin B, Jun D-K, Park K-H, Gu H-B, Kim K-W. A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method. J. Power Sources 2009; 178: 801-806. doi:10.1016/j.jpowsour.2007.09.073.

3

Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Liu MH. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4. Electrochim. Acta 2009; 54: 3206-3210. doi:10.1016/j.electacta.2008.11.033.

4

Kim H-S, Kong M, Kim K, Kim I-J, Gu H-B. Electrochemical characteristics of LiFePO4/LiCoO2 mixed electrode for Li secondary battery. J. Electroceram. 2009; 23: 219-224.doi:10.1007/s10832-007-9403-0.

5

Bhuvaneswari MS, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W. Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries. J. Power Sources 2008; 180: 553. doi:10.1016/j.jpowsour.2008.01.090.

6

Fu XZ, Wang X, Peng HF, Ke FS, Lei JH, Huang L, Lin JD, Liao DW. Low temperature synthesis of LiNiO2@LiCoO2 as cathode materials for lithium ion batteries. J. Solid State Electrochem. 2009; 14: 1117-1124. doi: 10.1007/s10008-009-0927-x.

7

Singh G, Panwar A, Sil A, Ghosh S. Synthesis and Characterization of LiMn2O4 Nanoparticles Using Citric Acid as Chelating Agent. Adv. Mater. Res. 2009; 67: 227-232. doi: 10.4028/www.scientific.net/AMR.67.227.

8

Rangappa D, Ichihara M, Kudo T, Honma I. Surface modified LiFePO4/C nanocrystals synthesis by organic molecules assisted supercritical water process. J. Power Sources 2009; 194: 1036-1042. doi:10.1016/j.jpowsour.2009.06.042.

9

Yang Y, Liao XZ, Ma ZF, Wang BF, He L, He YS. Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55 ℃. Electrochem. Commun. 2009; 11: 1277-1280. doi:10.1016/j.elecom.2009.04.021.

10

Fedorková A, Nacher-Alejos A, Gómez-Romero P, OrǐnákováR, D. Kaniansky. Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim. Acta 2009; 55: 943-947. doi:10.1016/j.electacta.2009.09.060.

11

Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ. Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries. Chem. Mater. 2009; 21: 5300-5306. doi: 10.1021/cm9024167.

12

Delacourt C, Wurm C, Laffont L, Leriche J-B, Masquelier C. Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites. Solid State Ionics 2006;177: 333-341. doi:10.1016/j.ssi.2005.11.003.

13

Kim CW, Park JS, Lee KS. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. J. Power Sources 2006;163: 144-150. doi:10.1016/j.jpowsour.2006.02.071.

14

Yang GL, Zhang XF, Liu J, He XG, Wang JW, Xie HM, Wang RS. Synthesis of LiFePO4/polyacenes using iron oxyhydroxide as an iron source. J. Power Sources 2010; 195: 1211-1215. doi:10.1016/j.jpowsour.2009.08.060.

15

FedorkováA, Wiemhöfer H-D, OriňákováR, Oriňák A, Stan MC, Winter M, Kaniansky D, Alejos AN. Improved lithium exchange at LiFePO4 cathode particles by coating with composite polypyrrole–polyethylene glycol layers. J. Solid State Electrochem. 2009; 13: 1867-1872. doi: 10.1007/s10008-008-0756-3.

16

Konarova M, Taniguchi I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol. 2009; 191: 111-116. doi:10.1016/j.powtec.2008.09.013.

17

Li X, Wang W, Shi C, Wang H, Xing Y. Structural and electrochemical characterization of LiFePO4/C prepared by a solgel route with long-and short-chain carbon sources. J. Solid State Electrochem. 2009; 13: 921-926. doi: 10.1007/s10008-008-0629-9.

18

Koleva V, Zhecheva E, Stoyanova R. A new phosphate-formate precursor method for the preparation of carbon coated nanocrystalline LiFePO4. J. Alloys Compd. 2009; 476: 950-957. doi:10.1016/j.jallcom.2008.09.144.

19

Zhou W, He W, Li Z, Zhao H, Yan S. Biosynthesis and electrochemical characteristics of LiFePO4/C by microwave processing. J. Solid State Electrochem. 2009; 13: 1819-1823. doi:0.1007/s10008-008-0762-5.

20

Chen SY, Gao B, Su LH, Mi CH, Zhang XG. Electrochemical properties of LiFePO4/C synthesized using polypyrrole as carbon source. J. Solid State Electrochem. 2009; 13: 1361-1366. doi: 10.1007/s10008-008-0696-y.

21

Bodoardo S, Gerbaldi C, Meligrana G, Tuel A, Enzo S, Penazzi N. Optimisation of some parameters for the preparation of nanostructured LifePO4/C cathode. Ionics 2009; 15: 19-26. doi: 10.1007/s11581-008-0259-3.

22

Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 200912, 10-13. doi:10.1016/j.elecom.2009.10.023.

23

Lu ZG, Cheng H, Lo MF, Chung CY. Pulse Laser Deposition and Electrochemical Characterization of LiFePO4-C Composite Thin Films. J. Phys. Chem. C 2008; 17: 7069-7078. doi: 10.1021/jp0744735.

24

Mi CH, Cao YX, Zhang XG, Zhao XB, Li HL. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technol. 2008; 181: 301-306. doi:10.1016/j.powtec.2007.05.017.

25

Chen D, Qiao X, Qiu X, Chen J, Jiang R. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J. Colloid Interface Sci. 2010; 344: 286-291. doi:10.1016/j.jcis.2009.12.055.

26

Zhang W, Chen P, Gao Q, Zhang Y, Tang Y. High-Concentration Preparation of Silver Nanowires: Restraining in Situ Nitric Acidic Etching by Steel-Assisted Polyol Method. Chem. Mater. 2008; 20: 1699. doi: 10.1021/cm7022554.

27

Kelly KL, Coronado E, Zhao L, Schatz GC. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003; 107: 668-677. doi: 10.1021/jp026731y.

28

Kottmann JP, Martin OJF. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001; 64: 235402. doi: 10.1103/PhysRevB.64.235402.

Nano Biomedicine and Engineering
Pages 19-24
Cite this article:
Chen D, Zhu G, Zhu X, et al. Effects of Silver Nanowires on The Electrochemical Performance of LiFePO4. Nano Biomedicine and Engineering, 2011, 3(1): 19-24. https://doi.org/10.5101/nbe.v3i1.p19-24

379

Views

9

Downloads

1

Crossref

2

Scopus

Altmetrics

Published: 31 March 2011
© 2011 D. Chen, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return