AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (495 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Dynamics of Fluids Contained in a Nano-cube

Reena Devi1Sunita Srivastava1K Tankeshwar2( )
Department of Physics, Panjab University, Chandigarh-160014, India
Computer Center, DCSA, Panjab University, Chandigarh-160014, India
Show Author Information

Abstract

The dynamics of fluid contained in a nano-cube has been studied by proposing theoretical model which is based on the microscopic consideration. The confinement affecting the movement at atomic level has been used to study the self-diffusion through Green Kubo relation. It is found that close to the walls, the dynamics of fluid slows down to an extent that it affects the flow of fluid even in the middle of the nanocube. Results are contrasted with the results obtained from similar considerations for fluid confined in rectangular nanotube. It is found that tendency of freezing near the wall is more in case of nanocube than in the rectangular nanotube. An empirical relation has also been proposed to explain the behaviour of wall mediated self-diffusion as a function of distance in either direction.

References

1
Abgrall, P.; Nguyen, N. T., Nanofluidic devices and their applications Anal. Chem. 2008, 80 (7), 2326-2341.doi:10.1021/ac702296u Hyungjun Kim, Changho Kim, Eok Kyun Lee, Peter Talkner and Peter Hänggi, Wall-mediated self-diffusion in slit and cylindrical pores, Phys.Rev. E 2008,77, 031202.doi:10.1103PhysRvE.77.031202 Jepps, O. G.; Bhatia, S. K.; Searles, D. J., Wall mediated transport in confined spaces: Exact theory for low density. Phys. Rev. Lett. 2003, 91 (12), 126102. doi:10.1103/PhysRevLett.91.126102
2

Jung, J. S.; Lee, J. W.; Kim, K.; Cho, M. Y.; Jo, S. G.; Joo, J., Rectangular Nanotubes of Copper Phthalocyanine: Application to a Single Nanotube Transistor. Chem. Mater. 2010, 22 (7), 2219-2225. doi:10.1021/cm903492k

3

Wu, J. H.; Varghese, B.; Zhou, X. D.; Teo, S. Y.; Sow, C. H.; Ang, S. G.; Xu, G. Q., Interconnected Networks of Zn(NO3)(2)center dot 6(H2O) Nanotubes and Its Solid-Phase Transformation into Porous Zinc Oxide Architectures. Chem. Mater. 2010, 22 (4), 1533-1539. doi:10.1021/cm902490g

4

Tyrrell, J. W. G.; Attard, P., Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 2001, 8717 (17),176104.doi:10.1103/PhysRevLett.87.176104

5

J.L. Parker and P.M. Claesson, Bubbles, cavities, and the longranged attraction between hydrophobic surfaces. J. Phys. Chem. 1994,98, 8468-8480.doi:10.1021/j100085a029

6

Eftekhari, F.; Escobedo, C.; Ferreira, J.; Duan, X. B.; Girotto, E. M.; Brolo, A. G.; Gordon, R.; Sinton, D., Nanoholes As Nanochannels: Flow-through Plasmonic Sensing. Anal. Chem. 2009, 81 (11), 4308-4311.doi:10.1021/ac900221y

7

Mai, H.X.; Sun, L.D.; Zhang, Y.W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; and Yan, C.H.; Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nano-polyhedra, Rods, and Cubes, J. Phys. Chem. B 2005, 109(51), 24380–24385. doi:10.1021/jp055584b

8

Zhang, X. H.; Khan, A.; Ducker, W. A., A nanoscale gas state. Phys. Rev. Lett. 2007, 98 (13), 136101 doi:10.1103/PhysRevLett.98.136101

9

Habich, A.; Ducker, W.; Dunstan, D. E.; Zhang, X. H., Do Stable Nanobubbles Exist in Mixtures of Organic Solvents and Water? J. Phys. Chem. B 2010, 114 (20), 6962-6967.doi:10.1021/jp911868j

10

G. Liu and V.S. J. Craig, Improved Cleaning of Hydrophilic ProteinCoated Surfaces using the Combination of Nanobubbles and SDS, ACS Applied Materials & Interfaces 1 (2009) 481–487. doi:10.1021/am800150p

11

Liu, G. M.; Wu, Z. H.; Craig, V. S. J., Cleaning of Protein-Coated Surfaces Using Nanobubbles: An Investigation Using a Quartz Crystal Microbalance. J. Phys. Chem. C 2008, 112 (43), 16748-16753.doi:10.1021/jp805143c

12

Wu, Z. H.; Chen, H. B.; Dong, Y. M.; Mao, H. L.; Sun, J. L.; Chen, S. F.; Craig, V. S. J.; Hu, J., Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J. Coll. Interface Science 2008, 328 (1), 10-14.doi:10.1016/j.jcis.2008.08.064

13

N. Rapoport, Z. Gao and A. Kennedy, Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy, J. Natl. Cancer Inst. 99 (2007) 1095-1106. doi:10.1093/jnci/djm043

14

Wang, Y.; Li, X.; Zhou, Y.; Huang, P. Y.; Xu, Y. H., Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. International Journal of Pharmaceutics 2010, 384 (1-2), 148-153.doi:10.1016/j.ijpharm.2009.09.027

15

Oshima, H.; Kikuchi, H.; Nakao, H.; Itoh, K.; Kamimura, T.; Morikawa, T.; Matsumoto, K.; Umada, T.; Tamura, H.; Nishio, K.; Masuda, H., Detecting dynamic signals of ideally ordered nanohole patterned disk media fabricated using nanoimprint lithography. Appl. Phys. Lett. 2007, 91 (2), 022508.doi:10.1063/1.2757118

16

Marthandam, P.; Brolo, A. G.; Sinton, D.; Kavanagh, K. L.; Moffitt, M. G.; Gordon, R., Nanoholes in metals with applications to sensors and spectroscopy. Inter. J. Nanotechnol. 2008, 5 (9-12), 1058-1081. doi:10.1504/IJNT.2008.019831

17

Genet, C.; Ebbesen, T. W., Light in tiny holes. Nature 2007, 445 (7123), 39-46.doi:10.1038/nature05350

18

Gou, L. F.; Murphy, C. J., Solution-phase synthesis of Cu2O nanocubes. Nano Lett. 2003, 3 (2), 231-234.doi:10.1021/nl0258776

19

Teo, J. J.; Chang, Y.; Zeng, H. C., Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006, 22 (17), 7369-7377.doi:10.1021/la060439q

20

Sun, Y. G.; Mayers, B.; Xia, Y. N., Metal nanostructures with hollow interiors. Advanced Materials 2003, 15 (7-8), 641-646. doi:10.1002/adma.200301639

21

Li, X. D.; Gao, H. S.; Murphy, C. J.; Gou, L. F., Nanoindentation of Cu2O nanocubes. Nano Lett. 2004, 4 (10), 1903-1907.doi:10.1021/nl048941n

22

F. Luo, D. Wu, L. Gao, S.Y. Lian, E.B. Wang, Z.H. Kang, Y. Lan, L. Xu, Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100, J. Cryst. Growth 2005,285, 534-540.doi:10.1016/j.jcrysgro.2005.09.032

23

G. Chen, C. Xu, X. Song, S. Xu, Y. Ding, and S. Sun, Template-free Synthesis of Single-Crystalline-like CeO2 Hollow Nanocubes, Crystal Growth & Design, 2008,8, 4449–4453doi:10.1021/cg800288x

24

Z. Wang, H. Wang, L. Wang, L. Pan, One-pot synthesis of singlecrystalline Cu2O hollow nanocubes, J. Phys. Chem. Solids 2009,70,719–722.doi:10.1016/j.jpcs.2009.02.011

25

Shi, L.; Bao, K. Y.; Cao, J.; Qian, Y. T., Controlled fabrication of SnO2 solid and hollow nanocubes with a simple hydrothermal route. Appl. Phys. Lett. 2008, 93 (15), 152511.doi:10.1063/1.2952758

26

Tankeshwar, K.; Srivastava, S., Dynamical model for restricted diffusion in nano-channels. Nanotechnology 2007, 18 (48), 485714. doi:10.1088/0957-4484/18/48/485714

27

R. Devi, J Sood, S. Srivastava and K. Tankeshwar, Diffusion of fluid confined to nanotube with rectangular cross section, Microfluidics Nanofluidics 2010,9, 737-742doi:10.1007/s10404-010-0587-2

28

Tankeshwar, K.; Srivastava, S., Dynamical model for restricted diffusion in nano-channels. Nanotechnology 2007, 18 (48), 3173-3182.

29

S. Toxvaerd, The dependence of velocity autocorrelation function on the intermolecular potential and on the memory function, J. Chem. Phys. 81 (1984) 5131-5136.doi:10.1063/1.447459

Nano Biomedicine and Engineering
Pages 47-52
Cite this article:
Devi R, Srivastava S, Tankeshwar K. Dynamics of Fluids Contained in a Nano-cube. Nano Biomedicine and Engineering, 2011, 3(1): 47-52. https://doi.org/10.5101/nbe.v3i1.p47-52

303

Views

4

Downloads

4

Crossref

5

Scopus

Altmetrics

Published: 31 March 2011
© 2011 R. Devi, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return