AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Identifying Functional Modules of Diffuse Large B-cell Lymphoma Gene Co-expression networks by Hierarchical Clustering Method Based on Random Matrix Theory

Jian ChenKaiwang Zhang( )Jianxin Zhong
Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Hunan 411105, China and Institute for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Hunan 411105, China
Show Author Information

Abstract

In this work, we propose an original method, the Random matrix theory (RMT)-based hierarchical clustering method, to identify functional gene networks of diffuse large B-cell Lymphoma (DLBCL) gene co-expression networks. Comparing topological approach, the RMT-based hierarchical clustering method is effective in representing not only the strong correlations between genes inside the modules (the modularity and independency of networks), but also the weak correlations between different modules (the hierarchy of networks). We show that missing expression values among microarray dataset should not be neglected, and different imputation methods result in different performances. We suggest LLS to estimate missing values for better performance in accuracy and stability. Based on the RMT, the random noises are separated from DLBCL gene expression data. We use normalized root mean squared error (NRMSE) ratio method to identify a transition zone of NNSDs, and for DLBCL networks it is [0.71, 0.84].

References

1

Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T, Powell JI, Yang L, Marti G.E, Moore DT, Hudson JR, Chan WC, Greiner T, Weisenburger D, Armitage JO, Lossos I, Levy R, Botstein D, Brown PO, Staudt LM. The lymphochip: a specialized cdna microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harbor Symp. Quant. Biol 1999; 64: 71-78. doi:10.1101/sqb.1999.64.71.

2

Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics. 2005; 21: 2883-2890. doi:10.1093/bioinformatics/bti415

3

Newman AM, Cooper JB, AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number. BMC Bioinformatics. 2010; 11: 117/1-15. doi:10.1186/1471-2105-11-117.

4

Allocco DJ, Kohane SI, Butte AJ. Quantifying the relationship between co-expression, co-regulation and gene function. BMC ioinformatics. 2004; 5: 18/1-10. doi:10.1186/1471-2105-5-18.

5

Ruan JH, Dean AK, Zhang WX. A general co-expression networkbased approach to gene expression analysis: comparison and applications. BMC Systems Biology. 2010; 4: 8/1-21. doi:10.1186/1752-0509-4-8.

6

Wigner EP. Random matrices in physics. SIAM Review. 1967; 9: 1-23. doi:10.1137/1009001.

7

Held K, Eisenberg E, Altshuler BL. Effect of spectral fluctuations on conductance-peak height statistics in quantum dots. Phys. Rev. B. 2002; 66: 033308/1-3. doi:10.1103/PhysRevB.66.033308.

8

Hofstetter E, Schreiber M. Statistical properties of the eigenvalue spectrum of the three-dimensional Anderson Hamiltonian.Phys. Rev.B. 1993; 48: 16979-16985. doi:10.1103/PhysRevB.48.16979.

9

Zhong JX, Geisel T. Level fluctuations in quantum systems with multifractal eigenstates. Phys. Rev. E. 1999; 59: 4071-4074. doi:10.1103/PhysRevE.59.4071.

10

Zhong JX, Grimm U, Romer RA, Schreiber M. Level-Spacing Distributions of Planar Quasiperiodic Tight-Binding Models. Phys. Rev. Lett. 1998; 80: 3996- 3999. doi:10.1103/PhysRevLett.80.3996.

11

Bohigas O, Pato MP. Randomly incomplete spectra and intermediate statistics. Phys. Rev. E. 2006; 74: 036212/1-6. doi:10.1103/PhysRevE.74.036212.

12

Jalan S, Bandyopadhyay JN. Random matrix analysis of complex networks. Phys. Rev. E. 2007; 76: 046107/1-7. doi:10.1103/PhysRevE.76.046107.

13

Bandyopadhyay JN, Jalan S. Universality in complex networks: Random matrix analysis. Phys. Rev. E. 2007; 76: 026109/1-4. doi:10.1103/PhysRevE.76.026109.

14

Jalan S, Solymosi N, Vattay G, Li BW. Random matrix analysis of localization properties of gene coexpression network. Phys. Rev. E. 2010; 81: 046118/1-8. doi:10.1103/PhysRevE.81.046118.

15

Potestio R, Caccioli F, Vivo P. Random Matrix Approach to Collective Behavior and Bulk Universality in Protein Dynamics. Phys. Rev. Lett. 2009; 103: 268101/ 1-4. doi:10.1103/PhysRevLett.103.268101.

16

Šeba P. Random Matrix Analysis of Human EEG Data. Phys. Rev. Lett. 2003; 91: 198104/1-4. doi:10.1103/PhysRevLett.91.198104.

17

Kwapien J, Drozda S, Oswiecimka P. The bulk of the stock market correlation matrix is not pure noise. Physica A. 2006; 359: 589-606. doi:10.1016/j.physa. 2005.05.090

18

Luo F, Zhong JX, Yang YF, Scheuermann RH, Zhou JZ. Application of random matrix theory to biological networks. Phys. Lett. A. 2006; 357: 420-423. doi:10.1016/j.physleta.2006.04.076.

19

Luo F, Zhong JX, Yang YF, Zhou JZ. Application of random matrix theory to microarray data for discovering functional gene modules. Phys. Rev. E. 2006; 73: 031924/1-5. doi:10.1103/PhysRevE.73.031924.

20

Luo F, Yang YF, Zhong JX, Gao HC, Khan L, Thompson DK, Zhou JZ. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics. 2007; 8: 299/1-17. doi:10.1186/1471-2105-8-299.

21

De Brevern AG, Hazout S, Malpertuy A. Influence of microarrays experiments missing values on the stability of gene groups by ierarchical clustering. BMC Bioinformatics. 2004; 5: 114/1-12. doi:10.1186/1471-2105-5-114.

22

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001; 17: 520-525. doi:10.1093/bioinformatics/17.6.520.

23

Bo TH, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004; 32: e34. doi:10.1093/nar/gnh026.

24

Zhou XB, Wang XD, Dougherty ER. Missing-value estimation using linear and non-linear regression with Bayesian gene selection. Bioinformatics. 2003; 19: 2302-2307. doi:10.1093/bioinformatics/btg323.

25

Kim H, Golub GH, Park H. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics. 2005; 2: 187-198. doi:10.1093/bioinformatics/bth499.

26

Sehgal MS, Gondal I, Dooley LS. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data. Bioinformatics. 2005; 21: 2417-2423. doi:10.1093/bioinformatics/bti345.

27

Ouyang M, Welsh WJ, Georgopoulos P. Gaussian mixture clustering and imputation of microarray data. Bioinformatics. 2004; 20: 917-923. doi:10.1093/bioinformatics/bth007.

28

Hu JJ, Li HF, Waterman MS, Zhou XJ. Integrative missing value estimation for microarray data. BMC Bioinformatics. 2006; 7: 449/1-14. doi:10.1186/1471-2105-7-449.

29

Tuikkala J, Elo L, Nevalainen LS, Aittokallio T. Improving missing value estimation in microarray data with gene ontology. Bioinformatics. 2006; 22: 566-572. doi:10.1093/bioinformatics/btk019.

30

Alizadeh AA, Eisen MB, Davis RE, Ma C, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000; 403: 503-511. doi:10.1038/35000501.

31

Enright AJ, Ouzounis CA. BioLayout—an automatic graph layout algorithm for similarity visualization. Bioinformatics. 2001; 17: 853-854. doi:10.1093/bioinformatics/17.9.853.

32

Eisen MB, Spellman PT, Brown PO, Botstein D. Proc Natl Acad Sci USA. 1998; 95: 14863-14868. doi:10.1073/pnas.95.25.14863.

33

Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA. 1999; 96: 9212-9217. doi:10.1073/pnas.96.16.9212.

34

Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Circulation Research. 2003; 92: 827-839. doi:10.1161/01.RES.0000070112.80711.3D.

35

Romero P, Dunbar PR, Valmori D, Pittet M, et al. Ex vivo staining of metastatic lymph nodes by class i major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic t lymphocytes. J. Exp. Med. 1998; 188: 1641-1650. doi:10.1084/jem.188.9.1641.

Nano Biomedicine and Engineering
Pages 57-65
Cite this article:
Chen J, Zhang K, Zhong J. Identifying Functional Modules of Diffuse Large B-cell Lymphoma Gene Co-expression networks by Hierarchical Clustering Method Based on Random Matrix Theory. Nano Biomedicine and Engineering, 2011, 3(1): 57-65. https://doi.org/10.5101/nbe.v3i1.p57-65

354

Views

13

Downloads

1

Crossref

1

Scopus

Altmetrics

Published: 31 March 2011
© 2011 J. Chen, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return