PDF (460.1 KB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Article | Open Access

Copper Nanoparticles Synthesis from Electroplating Industry Effluent

Ratnika Varshney1()Seema Bhadauria1M.S. Gaur2Renu Pasricha3
Microbiology and Nanotechnology Research Lab, Department of Botany, Raja Balwant Singh College, Khandari, Agra-282004, India
Department of Physics, Hindustan College of Science & Technology, Farah, Mathura-281122, India
Electron Microscopy, Material Characterization Division, National Physical Laboratory, Dr. K.S.Krishnan Marg, New Delhi-110012, India
Show Author Information

Abstract

In present investigation, samples from wastewaters of electroplating industry were collected and analyzed for the concentration of Cu2+ heavy metal. For the synthesis of copper nanoparticles, Pseudomonas stutzeri bacterial strain was used. The bacterial strain was isolated from soil and found that it produced 50-150 nm sized cubical copper nanoparticles from electroplating waste water. The nanoparticles have been characterized by UV-visible Spectrophotometer, X-ray diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray Analysis.

References

1
Faisal M, Hasnain S, African J. Biotechnology[online] 2004; 3(11): 610-617; ISSN 1684-5315.
2

Jackson AP, Alloway BT, Plant soils 1991; 132:179-186.

3

Huang C P, Fu PLK, J. Water Pollu. Control Fed. 1984; 56:233-237.

4

Mclaughlin MJ, Tiller RG, Naidu R, Stevens, DP, The behaviour and environmental impact of contaminants in fertilizers Aust. J. Soil Res. 1996; 34:1-54.doi: 10.1071/SR9960001

5

Klaus-Joerger T, Joerger R, Olsson E, Granqvist C. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science Trends in Biotechnology. 2001; 19(1): 15-20.doi: 10.1016/S0167-7799(00)01514-6

6
Euef L, Prey T, Kubicek, CP. Applied Microbiology and Biotechnology, Springer: Berlin. 1991; pp 688.
7

Sinha A, Khare SK.Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresource Technology. 2010; 102:4281-4284.doi: 10.1016/j.biortech.2010.12.040

8

Bhattacharya D, Rajinder G, Nanotechnology and Potential of Microorganisms. Critical Reviews in Biotechnology. 2005; 25:199-204.doi: 10.1080/07388550500361994

9

Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H, Synthesis of magnetic nanoparticles and their application to bioassays. Analytical and Bioanalytical Chemistry. 2006; 384:593-600.doi: 10.1007/s00216-005-0255-7

10

Singh M, Singh S, Prasad S, Gambhir IS. Digest J of Nanomat and Biostruc. 2008; 3:115-122.

11

Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 2003; 14:95-100.doi: 10.1088/0957-4484/14/1/321

12

Gericke M, Pinches A.Biological synthesis of metal nanoparticles Hydrometallurgy 2006; 83:132-140.doi: 10.1016/j.hydromet.2006.03.019

13

Joerger R, Klaus T, Granqvist C.G. Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin-Film Coatings. Adv. Mat. 2000; 12:407-409.doi: 10.1002/(SICI)1521-4095(200003)12:6<407::AIDADMA407>3.0.CO;2-O

14

Setlur AA, Lauerhaas JM, Dai JY, Chang RPH. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl. Phys. Lett. 1996; 69;345-347.doi: 10.1063/1.118055

15

Hao C, Xiao F, Cui Z. J. of Nanopart. Res. 2008; 10:47-51.

16

Reetz MT, Helbig W.Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994; 116:7401-7402. doi: 10.1021/ja00095a051

17

Kortenaar MV Ten, Kolar ZT, Tichelaar FD. Formation of Long-Lived Silver Clusters in Aqueous Solution by Anodic Dispersion J. Phys. Chem. B. 1999; 103:2054-2060.doi: 10.1021/jp983621b

18

Chang SS, Shih CW, Chen CD, Lai WC, Chris Wang CR. The Shape Transition of Gold Nanorods. Langmuir. 1999; 15:701-709.doi: 10.1021/la980929l

19

Mohamed MB, Wang ZL, El-Sayed, MA. Temperature-Dependent Size-Controlled Nucleation and Growth of Gold Nanoclusters J. Phys. Chem. A. 1999;103:10255-10259.doi: 10.1021/jp9919720

20

Yu YY, Chang SS, Lee CL, Chris Wang CR. Gold Nanorods:Electro-Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B. 1997; 101:6661-6664.doi: 10.1021/jp971656q

21

Kariv-Miller E, Christian PD, Svetlic Ic V. The First Cathodically Generated Tetraalkylammonium-Tin Compounds. Langmuir. 1995; 11:1817-1821.doi: 10.1021/la00005a062

22

Varshney R, Bhadauria S, Gaur MS, Pasricha R. Characterization of copper nanoparticles synthesized by a novel microbiological method J. of Metals 2010; 62(12):102-104. doi: 10.1007/s11837-010-0171-y

23
Nigam SS. Lab Manual 1965; Issued by Defence Research Laboratory (Materials). Ministry of Defence, Kanpur.
24
Kreibig U, Vollmer M. eds, Optical Properties of Metal Clusters, Springer: Berlin, 1995; 207-234.
25

Nair B, Pradeep T. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth Des. 2002; 2:293-298.doi: 10.1021/cg0255164

26

Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. J. Mol. Biol. 2000; 299:725-735.doi: 10.1006/jmbi.2000.3682

Nano Biomedicine and Engineering
Pages 115-119
Cite this article:
Varshney R, Bhadauria S, Gaur M, et al. Copper Nanoparticles Synthesis from Electroplating Industry Effluent. Nano Biomedicine and Engineering, 2011, 3(2): 115-119. https://doi.org/10.5101/nbe.v3i2.p115-119
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return