AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (591.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Gold Nanoparticles Enhance Efficiency of In Vitro Gene Transcription-Translation System

Daxiang Cui1,2( )Hong Zhang1Kan Wang2Feng Gao2Xueqing Zhang2Toru Asahi1Rong He2Tetsuya Osaka1
Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
Show Author Information

Abstract

Herein we report that the in vitro gene transcription-translation efficiency can be dramatically enhanced by gold nanoparticles of 5nm in diameter. The addition of less than or equal to 1.2 nM of gold nanoparticles of 5 nm in diameter into rapid-translation-system (RTS) reagents increased the transcription-translation efficiency up to 30% and shortened the reaction time to 4 h, with the same or higher translation yields. Gold nanoparticles did not decrease the yields’ bioactivity. The results show that gold nanoparticles of 5 nm may act as a bio-catalyst in the RTS reaction. This innovation has great potential in applications such as large-scale protein fabrication, gene transcription-translation regulation, and studies of structure and function of toxic protein.

References

1

Ullis KB, Faloona FA Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987; 155:335-350.doi: 10.1016/0076-6879(87)55023-6

2

Zubay G. In vitro synthesis of protein in microbial systems. Annu. Rev. Genet. 1973; 7:267-287.doi: 10.1146/annurev.ge.07.120173.001411

3

Drexler KE. Nanosystems- molecular machinery, manufacturing, and computation. John Wiley & Sons, Inc., New York, 1999; 1-8.

4

Lee BS, Lee SC, Holliday LS. Biochemistry of mechanoenzymes: biological motors for nanotechnology. Biomed Microdevices. 2003; 5:269-280.doi: 10.1023/A:1027324811709

5

Kerner MJ, Naylor DJ, Ishihama Y, Maier T. et al Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell. 2005; 122:209-220.doi: 10.1016/j.cell.2005.05.028

6

Schlieker C, Bukau B, and Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J. Biotechnol. 2002; 96:13-21.doi: 10.1016/S0168-1656(02)00033-0

7

Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB. A continuous cell-free translation system capable of producing polypeptides in high yield. Science. 2001; 242:1162-1164.doi: 10.1126/science.3055301

8

Hino M, Shinohara Y, Kajimoto K, Terada H, BabaYRequirement of continuous transcription for the synthesis of sufficient amounts of protein by a cell-free rapid translation system. Protein Expression Purif. 2002; 24: 255-259.doi: 10.1006/prep.2001.1570

9

Martin GA, Kawaguchi R, DeGiovanni A, Fukushima M, Mutter W, High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/translation system. Biotechniques. 2001; 31: 948-950.

10

Han Y, Deng J, Huan Y, Gao F, Pan B, Cui D. Expression of single-chain Fv gene specific for γ-seminoprotein by RTs and its biological activity identification. Biotechnology Progress. 2006; 22:1084-1089. doi: 10.1021/bp0504445

11

Iskakova MB, Szaflarski W, Dreyfus M, Remme J, Nierhaus KH. Troubleshooting coupled in vitro transcription-translation system derived from Escherichia coli cells: synthesis of high-yield fully active proteins. Nucleic Acids. Res. 2006; 34:e135.doi: 10.1093/nar/gkl462

12

Kim DM, Swartz JR. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog. 2000; 16:385-390. doi: 10.1021/bp000031y

13

Makarova OV, Makarov EM, Sousa R, Dreyfus M. Transcribing of Escherichia coli genes with mutant T7 RNA polymerases: stability of lacZ mRNA inversely correlates with polymerase speed. Proc. Natl. Acad. Sci. USA. 92; 12250-12254.doi: 10.1073/pnas.92.2612250

14

Bonner G, Lafter E- M, Sousa R Characterization of a set of T7 RNA polymerase active site mutants. J. Biol. Chem. 1994; 269:25120-25128.

15

Chamberlin M, Ring J. Characterization of T7-specific ribonucleic acid polymerase Ⅰ. General properties of the enzymatic reaction and the template specificity of the enzyme. J. Biol. Chem. 1973;248:2235-2244.

16

Pan B, Cui D, Sheng Y, Ozkan CS, Gao F, et al Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007; 67:8156-8163.doi: 10.1158/0008-5472.CAN-06-4762

17

Rosi NL, Giljohann DA, Thaxton CS. Lytton Jean AKR, Han MS. Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006; 312:1027-1030.doi: 10.1126/science.1125559

18

Pan B, Ao L, Gao F, Tian H, He R, Cui D End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology. 2005; 16:1776-1780.doi: 10.1088/0957-4484/16/9/061

19

Wang P. Nanoscale biocatalyst systems. Current Opinion in Biotechnology. 2006; 17: 574-579.doi: 10.1016/j.copbio.2006.10.009

20

Chen H, Gao F, He R, Cui D. Chemiluminescence of luminol catalyzed by silver nanoparticles. Journal of Colloid and Interface Science. 2007; 315;158-163.doi: 10.1016/j.jcis.2007.06.052

21

Cui D. Advance and prospect of biomolecules functionalized carbon nanotubes. J. Nanosci Nanotechnol. 2007; 7:1298-314.doi: 10.1166/jnn.2007.654

22

Gole A, Dash C, Soman C, Sainkar SR, Rao M, Sastry M. On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjugate Chem.2001; 12:684-690.doi: 10.1021/bc0001241

23

Caruso F, Schuler C. Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir. 2000; 16: 9595-9603.doi: 10.1021/la000942h

24

Asuri P, Karajanagi SS, Yang HC, Yim TJ, Kane RS, Dordick JS. Increasing protein stability through control of the nanoscale environment. Langmuir. 2006; 22:5833-5836.doi: 10.1021/la0528450

25

Cui D, Tian FR, Kong Y, Igor T, Gao H. Effects of Single wall carbon nnaotubes on polymerase chain reaction. Nanotechnology 2004; 15:154-157.doi: 10.1088/0957-4484/15/1/030

26

Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, Fan C, Hu J. Nanoparticle PCR: Nanogold-assisted PCR with enhanced specificity. Angew. Chem. Int. Ed. 2005; 44:5100-5103.doi: 10.1002/anie.200500403

27

Li M, Lin YC, Wu CC, Liu HS. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Research. 2005; 33:184. doi: 10.1093/nar/gni183

28

Lewicki BT, Margus T, Remme J, Nierhaus KH. Coupling of rRNA transcription and ribosomal assembly in vivo–formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which can not be replaced by bacteriophage-T7 RNA polymerase. J. Mol. Biol.1993; 231:581-593.doi: 10.1006/jmbi.1993.1311

29

McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Totello VR Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc. 2001;123: 7626-7629.doi: 10.1021/ja015556g

30

Stamm M, Sommer JU.. Entropy and enthalpy at play. Nature mater. 2007; 6:260-261.doi: 10.1038/nmat1880

31

Korgel BA. Interfaces behaving well. Nature Mater. 2007; 6:551-552. doi: 10.1038/nmat1969

32

Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296:550-553.doi: 10.1126/science.1068999

33

Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-297.doi: 10.1016/S0092-8674(04)00045-5

34

Cui D, Jin G, Gao TW, Sun T, Tian F, Estrada GG, Gao H, Sarai A Characterization of BRCAA1 and its novel epitope identification. Cancer Epidemiol Biomarkers Prev. 2004; 13:1136-1145.

35

Nishimura S, Harada F, Narushima U, Seno T. Biochimica Et Biophysica Acta. 1967; 142:133-148.

Nano Biomedicine and Engineering
Pages 120-125
Cite this article:
Cui D, Zhang H, Wang K, et al. Gold Nanoparticles Enhance Efficiency of In Vitro Gene Transcription-Translation System. Nano Biomedicine and Engineering, 2011, 3(2): 120-125. https://doi.org/10.5101/nbe.v3i2.p120-125

231

Views

4

Downloads

4

Crossref

8

Scopus

Altmetrics

Published: 30 June 2011
© 2011 DX. C, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return