AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Experimental and Theoretical Studies of 1,3-diaminopropylene Derivatives as Potential Antioxidative Agents for Copper Nanoparticles in Hydrothermal System

Guo Gao( )Xueqing ZhangKan WangLili FengPeng HuangYixia ZhangChunlei ZhangMeng HeXiao Zhi
Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
Show Author Information

Abstract

Novel 1,3-diamino-propylene derivatives as potential corrosion inhibitors for copper nanoparticles has been studied by density functional theory (DFT) calculations, Fourier transform infrared spectra (FTIR), thermogravimetric and Zeta potential analysis. 1,3-Dimorpholin-propylene was considered to be the most promising inhibitor for copper nanoparticles. Thermogravimetric results indicated the oxidation temperature of copper nanoparticles decreased from 286.50 ℃ (blank) to 270.1 ℃ (inhibitor). FTIR spectra indicated the addition of inhibitor could optimize the adsorption behavior of surfactant molecules on the surface of copper nanoparticles. Zeta potential results showed 1,3-dimorpholin-propylene could improve the stability of copper nanoparticles (~0 mV for blank, and -2.5 mV for inhibitor).

References

1

Xu Q, Zhao Y, Xu J, Zhu J. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators, B 2006; 114:379.doi: 10.1016/j.snb.2005.06.005

2

Yeshchenko OA, Dmitruk IM, Dmytruk AM, Alexeenko AA. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng., B 2007; 137:247.doi: 10.1016/j.mseb.2006.11.030

3

Singh P, Katyal A, Kalra R. Chandra R. Copper nanoparticles in an ionic liquid: an efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxothiazolyl) methanes. Tetrahedron Lett. 2008; 49: 727.doi: 10.1016/j.tetlet.2007.11.106

4

Yu B, Woo P, Erb U. Corrosion behaviour of nanocrystalline copper foil in sodium hydroxide solution. Scr. Mater. 2007; 56:353.doi: 10.1016/j.scriptamat.2006.11.007

5

Heli H, Jabbari A, Zarghan M, Moosavi-Movahedi A.A. Copper nanoparticles–carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sens. Actuators, B 2009; 140:245. doi: 10.1016/j.snb.2009.04.021

6

Yoshida K, Gonzalez-Arellano C, Luque R, Gai PL. Efficient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation. Appl. Catal., A. 2010; 379:38. doi: 10.1016/j.apcata.2010.02.028

7

Mott D, Galkowski J, Wang L, Luo J, Zhong C. Synthesis of Size-Controlled and Shaped Copper Nanoparticles Langmuir, 2007; 23: 5740. doi: 10.1021/la0635092

8

Chen S, Sommers JM. Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution†. J. Phys. Chem. B. 2001; 105:8816. doi: 10.1021/jp011280n

9

Chen L, Zhang D, Chen J, Zhou H, Wan H. The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces. Mater. Sci. Eng., A 2006; 415:156. doi: 10.1016/j.msea.2005.09.060

10

Yıldırım A, Cetin M. Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors. Corros. Sci. 2008; 50:155. doi: 10.1016/j.corsci.2007.06.015

11

Moretti G, Guidi F. Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid. Corros. Sci. 2002; 44: 1995. doi: 10.1016/S0010-938X(02)00020-3

12

Ali SA, Al-Muallem HA, Rahman SU, Saeed MT. Bisisoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 2008; 50:3070. doi: 10.1016/j.corsci.2008.08.011

13

Bentiss F, Traisnel M, Lagrenee M. The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 2000; 42:127. doi: 10.1016/S0010-938X(99)00049-9

14

Obot IB, Obi-Egbedi NO. 2,3-Diphenylbenzoquinoxaline: A new corrosion inhibitor for mild steel in sulphuric acid. Corros. Sci. 2010; 52: 282. doi: 10.1016/j.corsci.2009.09.013

15

Jamil H.E, Shriri A, Boulif R, Bastos C, Montemor M.F, Ferreira MGS. Electrochemical behaviour of amino alcohol-based inhibitors used to control corrosion of reinforcing steel. Electrochim. Acta 2004; 49:2753. doi: 10.1016/j.electacta.2004.01.041

16

Quraishi M.A, Sharma H.K. 4-Amino-3-butyl-5-mercapto-1,2,4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid. Mater. Chem. Phys. 2002; 78:18.doi: 10.1016/S02540584(02)00313-9

17

Nmai CK. Multi-functional organic corrosion inhibitor. Cem. Concr. Compos. 2004; 26:199. doi: 10.1016/S0958-9465(03)00039-8

18

Neville A, Wang C. Multi-functional organic corrosion inhibitor. Wear, 2009; 267:195. doi: 10.1016/j.wear.2009.01.038

19

Reznik VS, Akamsin VD, Khodyrev YuP, Galiakberov RM, Efremov Yu Ya, Tiwari L. Mercaptopyrimidines as inhibitors of carbon dioxide corrosion of iron. Corros. Sci. 2008; 50:392. doi: 10.1016/j.corsci.2007.06.021

20

Kandemirli F, Sagdinc S. Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corros. Sci. 2007; 49:2118. doi: 10.1016/j.corsci.2006.10.026

21

Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci. 2008; 50:2981. doi: 10.1016/j.corsci.2008.08.043

22

Jamalizadeh E, Hosseini SMA, Jafari AH. Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media. Corros. Sci. 2009; 51:1428. doi: 10.1016/j.corsci.2009.03.029

23

Rodríguez-Valdez LM, Martínez-Villafañe A, Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties. J. Mol. Struct.: THEOCHEM. 2005; 713:65. doi: 10.1016/j.theochem.2004.10.036

24

Gao G, Wu HX, He R, Cui DX. Corrosion inhibition during synthesis of Cu2O nanoparticles by 1,3-diaminopropylene in solution. Corros. Sci. 2010; 52:2804. doi: 10.1016/j.corsci.2010.04.028

25

Mott D, Galkowski J, Wang L, Luo J, Zhong CJ. Synthesis of Size-Controlled and Shaped Copper Nanoparticles. Langmuir. 2007; 23:5740. doi: 10.1021/la0635092

26

Cruz J, Pandiyan T, García-Ochoa E. A new inhibitor for mild carbon steel: Electrochemical and DFT studies. J. Electroanal. Chem. 2005; 583:8.doi: 10.1016/j.jelechem.2005.02.026

Nano Biomedicine and Engineering
Pages 130-136
Cite this article:
Gao G, Zhang X, Wang K, et al. Experimental and Theoretical Studies of 1,3-diaminopropylene Derivatives as Potential Antioxidative Agents for Copper Nanoparticles in Hydrothermal System. Nano Biomedicine and Engineering, 2011, 3(2): 130-136. https://doi.org/10.5101/nbe.v3i2.p130-136

344

Views

7

Downloads

0

Crossref

1

Scopus

Altmetrics

Published: 30 June 2011
© 2011 G.Gao et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return