AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (706.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Nanoparticles in Photodynamic Therapy

Ian Wark Research Institute, University of South Australia, Adelaide, SA 5095, Australia
Show Author Information

Abstract

This article contains a critical review on the application of different types of nanoparticles in photodynamic therapy (PDT). Passive carrier particles like photosensitiser-“doped” silica nanoparticles are discussed as well as luminescent and noble metal nanocrystals in conjunction with molecular photosensitisers. Recent achievements are highlighted and the fundamental limitations of these systems are discussed. The article is concluded by an outlook on potential improvements and the possibility for practical applications of nanoparticle-based PDT.

References

1

Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. The Lancet Oncology. 2004; 5(8):497-508. doi: 10.1016/S1470-2045(04)01529-3.

2

Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today. 1999; 4(11):507-517. doi: 10.1016/S1359-6446(99)01412-9.

3

Dougherty H, Dougherty H, Gomer CJ, Jori G, Kessel D, Korbelik M, et al. Photodynamic Therapy. J. Natl. Cancer Inst. 1998; 90(12):889-905. doi: 10.1093/jnci/90.12.889.

4

Liu C. Research and Development of Nanopharmaceuticals in China. Nano Biomed. Eng. 2009; 1(1):1-12. doi: 10.5101/nbe.v1i1.p1-12.

5

Zhang Y. Relations between Size and Function of Substance Particles. Nano Biomed. Eng. 2011; 3(1):1-16. doi: 10.5101/nbe.v3i1.p1-16.

6

Leatherdale CA, Woo W-K, Mikulec FV, Bawendi MG. On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots. J. Phys. Chem. B. 2002; 106(31):7619-7622. doi: 10.1021/jp025698c.

7

Osborne SW, Blood P, Smowton PM, Xin YC, Stintz A, Huffaker D, et al. Optical absorption cross section of quantum dots. J. Phys.: Condens.Matter. 2004; 16(35):S3749. doi: 10.1088/0953-8984/16//35/016.

8

Schweitzer C, Schmidt R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chem.Rev. 2003; 103(5):1685-1758. doi: 10.1021/cr010371d.

9

Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B: Biol. 1997; 39(1):1-18. doi: 10.1016/S1011-1344(96)07428-3.

10

Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagn. Photodyn. Ther. 2010; 7(2):61-75. doi: 10.1016/j.pdpdt.2010.02.001.

11

Wainwright M. Photodynamic Therapy: The Development of New Photosensitisers. Anti-Cancer Agents in Medicinal Chemistry. 2008; 8(12):280-291. doi: 10.2174/187152008783961888.

12

Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky K-E, et al. 5-Aminolevulinic acid-based photodynamic therapy. Cancer. 1997; 79(12):2282-2308. doi: 10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O.

13

Samia ACS, Chen X, Burda C. Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc. 2003; 125(51):15736-15737. doi: 10.1021/ja0386905.

14

Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible Quantum Dots for Biological Applications. Chemistry & Biology. 2011; 18(1):10-24. doi: 10.1016/j.chembiol.2010.11.013.

15

Matović V, Buha A, Bulat Z, Đukić-Ćosić D. Cadmium Toxicity Focus on Oxidative Stress Induction and Interactions with Zinc and Magnesium. Archives of Industrial Hygiene and Toxi-cology. 2011; 62(1):65-76. doi: 10.2478/10004-1254-62-2011-2075.

16

Xu S, Kumar S, Nann T. Rapid Synthesis of High-Quality InP Nanocrystals. J. Am. Chem. Soc. 2006; 128(4):1054-1055. doi: 10.1021/ja057676k.

17

Xu S, Ziegler J, Nann T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008; 18(23):2653-2656. doi: 10.1039/B803263G.

18

Xu S, Klama F, Ueckermann H, Hoogewerff J, Clayden N, Nann T. Optical and Surface Characterisation of Capping Ligands in the Preparation of InP/ZnS Quantum Dots. Sci. Adv.Mater. 2009; 1(2):125-137. doi: 10.1166/sam.2009.1035.

19

Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M. Observation of the “Dark Exciton” in CdSe Quantum Dots. Phys. Rev. Lett. 1995; 75(20):3728. doi: 10.1103/PhysRevLett.75.3728.

20

Bawendi MG, Carroll PJ, Wilson WL, Brus LE.Luminescence properties of CdSe quantum crystallites:Resonance between interior and surface localized states. J. Chem. Phys. 1992; 96(2):946-954. doi: 10.1063/1.462114.

21

Ma J, Chen J-Y, Idowu M, Nyokong T. Generation of Singlet Oxygen via the Composites of Water-Soluble Thiol-Capped CdTe Quantum Dots-Sulfonated Aluminum Phthalocyanines. J. Phys. Chem. B. 2008; 112(15):4465-4469. doi: 10.1021/jp711537j.

22

Chen J-Y, Lee Y-M, Zhao D, Mak N-K, Wong RN-S, Chan W-H, et al. Quantum Dot-mediated Photoproduction of Reactive Oxygen Species for Cancer Cell Annihilation. Photophys. Photobiol. 2010; 86(2):431-437. doi: 10.1111/j.1751-1097.2009.00652.x.

23

Li J, Guo D, Wang X, Wang H, Jiang H, Chen B. The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro. Nanoscale Research Letters. 2010; 5(6):1063-1071. doi: 10.1007/s11671-010-9603-4.

24

Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of Cytotoxicity by Photoexcited TiO2 Particles. Cancer Research. 1992; 52(8):2346 -2348.

25

Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kubota Y, et al. Novel Photodynamic Therapy Using Water-dispersed TiO2–Polyethylene Glycol Compound: Evaluation of Antitumor Effect on Glioma Cells and Spheroids In Vitro.Photochem. Photobiol. 2010; 86(4):964-971.doi: 10.1111/j.1751-1097.2010.00742.x.

26

Yan F, Kopelman R. The Embedding of Meta-tetra(Hydroxyphenyl)-Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH-dependent Optical Properties. Photochem. Photobiol. 2003; 78(6):587-591. doi: 10.1562/0031-8655(2003)0780587TEOM.

27

Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand J-O.Silica-based nanoparticles for photodynamic therapy applicatiao Nanoscale. 2010; 2(7):1083-1095. doi: 10.1039/C0NR00096E.

28

Zhao B, Yin J-J, Bilski PJ, Chignell CF, Roberts JE, He Y-Y Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol. Appl. Pharmacol. 2009; 241(2):163-172. doi: 10.1016/j.taap.2009.08.010.

29

Kim S, Ohulchanskyy TY, Bharali D, Chen Y, Pandey RK, Prasad PN. Organically Modified Silica Nanoparticles with Intraparticle Heavy-Atom Effect on the Encapsulated Photosensitizer for Enhanced Efficacy of Photodynamic Therapy. J. Phys. Chem. C. 2009; 113(29):12641-12644. doi: 10.1021/jp900573s.

30

Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocine O, Amro K, et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. 2009; (12):1475-1477. doi: 10.1039/B900427K.

31

Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, et al. Folic Acidconjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy. Theranostics. 2011; 1:240-250.

32

Kim H-J, Shin K-J, Han MK, An K, Lee J-K, Honma I, et al. One-pot synthesis of multifunctional mesoporous silica nanoparticle incorporated with zinc(Ⅱ) phthalocyanine and iron oxide. Scr. Mater. 2009; 61(12):1137-1140. doi: 10.1016/j.scriptamat.2009.09.001.

33

Chen Z-L, Sun Y, Huang P, Yang X-X, Zhou X-P. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy. Nanoscale Res. Lett. 2009; 4(5):400-408-408. doi: 10.1007/s11671-009-9254-5.

34

Lai C-W, Wang Y-H, Lai C-H, Yang M-J, Chen C-Y, Chou P-T, et al. Iridium-Complex-Functionalized Fe3O4/SiO2 Core/Shell Nanoparticles: A Facile Three-in-One System in Magnetic Resonance Imaging, Luminescence Imaging, and Photodynamic Therapy. Small. 2008; 4(2):218-224. doi: 10.1002/smll.200700283.

35

Tada DB, Vono LLR, Duarte EL, Itri R, Kiyohara PK, Baptista MS, et al. Methylene Blue-Containing Silica-Coated Magnetic Particles: A Potential Magnetic Carrier for Photodynamic Therapy. Langmuir. 2007; 23(15):8194-8199. doi: 10.1021/la700883y.

36

Yun Sun et al. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology. 2009; 20(13):135102. doi: 10.1088/0957-4484/20/13/135102.

37

Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011; 32(13):3447-3458. doi: 10.1016/j.biomaterials.2011.01.032.

38

Zhang R, Wu C, Tong L, Tang B, Xu Q-H. Multifunctional Core-Shell Nanoparticles as Highly Efficient Imaging and Photosensitizing Agents. Langmuir. 2009; 25(17):10153-10158. doi: 10.1021/la902235d.

39

Davydenko MO, Radchenko EO, Yashchuk VM, Dmitruk IM, Prylutskyy YI, Matishevska OP, et al. Sensibilization of fullerene C60 immobilized at silica nanoparticles for cancer photodynamic therapy. J. Mol. Liq. 2006; 127(1-3):145-147. doi: 10.1016/j.molliq.2006.03.046.

40

Cheng S-H, Lee C-H, Yang C-S, Tseng F-G, Mou C-Y, Lo L-W. Mesoporous silica nanoparticles functionalized with an oxygensensing probe for cell photodynamic therapy: potential cancer theranostics. J. Mater. Chem. 2009; 19(9):1252-1257. doi: 10.1039/B816636F.

41

Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, BarberiHeyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology.2008; 26(11):612-621. doi: 10.1016/j.tibtech.2008.07.007.

42

Samia ACS, Dayal S, Burda C. Quantum Dot-based Energy Transfe: Perspectives and Potential for Applications in Photodynamic Therapy. Photochemistry and Photobiology. 2006; 82(3):617-625. doi: 10.1562/2005-05-11-IR-525.

43

Shi L, Hernandez B, Selke M. Singlet Oxygen Generation from Water-Soluble Quantum Dot-Organic Dye Nanocomposites. J. Am. Chem. Soc. 2006; 128(19):6278-6279. doi: 10.1021/ja057959c.

44

Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, et al. Singlet Oxygen Production by Peptide-Coated Quantum Dot-Photosensitizer Conjugates. Journal of the American Chemical Society. 2007; 129(21):6865-6871. doi: 10.1021/ja070713i.

45

Narband N, Mubarak M, Ready D, Parkin IP, Nair SP, Green MA, et al. Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization. Nanotechnology.2008; 19(44):445102.doi: 10.1088/0957-4484/19/44/445102.

46

Moeno S, Antunes E, Nyokong T. The determination of the photosensitizing properties of mercapto substituted phthalocyanine derivatives in the presence of quantum dotscapped with mercaptopropionic acid. Journal of Photochemistryand Photobiology A: Chemistry. 2011; 218(1):101-110. doi: 10.1016/j.jphotochem.2010.

47

Rakovich A, Savateeva D, Rakovich T, Donegan J, Rakovich Y, Kelly V, et al. CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy. Nanoscale Research Letters. 2010; 5(4):753-760.

48

Duong HD, Rhee JI. Singlet oxygen production by fluorescence resonance energy transfer (FRET) from green and orange CdSe/ZnS QDs to protoporphyrin Ⅸ (PpⅨ). Chemical Physics Letters. 2011; 501(4-6):496-501. doi: 10.1016/j.cplett.2010.11.021.

49

Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco J A. The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Adv. Funct. Mater. 2009; 19(18):2924-2929. doi: 10.1002/adfm.200900234.12.009.

50

Zhang P, Steelant W, Kumar M, Scholfield M. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc. 2007; 129(15):4526-4527.doi: 10.1021/ja0700707

51

Chatterjee DK, Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine. 2008; 3(1):73-82. doi: 10.2217/17435889.3.1.73.

52

Qian HS, Guo HC, Ho PC-L, Mahendran R, Zhang Y. MesoporousSilica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small. 2009; 5(20):2285-2290.doi: 10.1002/smll.200900692.

53

Chen W, Zhang J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006; 6:1159-1166(8). doi: 10.1166/jnn.

54

Hone DC, Walker PI, Evans-Gowing R, FitzGerald S, Beeby A, Chambrier I, et al. Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles: A Potential Delivery Vehicle for Photodynamic Therapy. Langmuir. 2002; 18(8):2985-2987. doi: 10.1021/la0256230.2006.327.

55

Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD. Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology. 2005; 16(1):55-62.doi: 10.1016/j.copbio.2005.01.001.

56

Gil-Tomás J, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP, et al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O-tiopronina-gold nanoparticle conjugate. J. Mater. Chem. 2007; 17(35):3739-3746. doi: 10.1039/B706615E.

57

Zaruba K, Kralova J, Rezanka P, Pouckova P, Veverkova L, Kral V.Modified porphyrin-brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org. Biomol. Chem. 2010; 8(14):3202-3206. doi: 10.1039/C002823A.

58

Gil-Tomas J, Dekker L, Narband N, Parkin IP, Nair SP, Street C, et al. Lethal photosensitisation of bacteria using a tin chlorin e6-glutathione-gold nanoparticle conjugate. J. Mater. Chem. 2011; 21(12):4189-4196. doi:10.1039/c0jm03555f.

Nano Biomedicine and Engineering
Pages 137-143
Cite this article:
Nann T. Nanoparticles in Photodynamic Therapy. Nano Biomedicine and Engineering, 2011, 3(2): 137-143. https://doi.org/10.5101/nbe.v3i2.p137-143

365

Views

3

Downloads

33

Crossref

38

Scopus

Altmetrics

Published: 30 June 2011
© 2011 Thomas Nann.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return