AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (932.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Multiblock Polyurethanes Based on Biodegradable Amphiphilic Poly(ε-caprolactone)/Poly(ethylene glycol) Segments as Candidates for Tissue Engineering Applications

Irene BartolozziStefania CometaCesare ErricoFederica ChielliniEmo Chiellini( )
Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab) UdR-INSTM-Department of Chemistry and Industrial Chemistry, University of Pisa-Via Vecchia Livornese 1291, 56010, S. Piero a Grado (Pisa), Italy
Show Author Information

Abstract

Biodegradable amphiphilic multiblock poly(ether-ester-urethane)s were prepared by one-step bulk polycondensation of PEG and PCL macrodiols and HMDI with good yields and high molecular weights. The copolymers were characterized by 1H-NMR, FT-IR, SEC, TGA and DSC analysis. Different ratios of PEG/PCL, PEG macromonomer length and copolymer molecular weights allowed for tuning their hydrophilicity. Thanks to their tunable characteristics, the prepared multiblock copolymers can be exploited in the fabrication of biodegradable scaffolds for tissue engineering by means of the electrospinning technique.

References

1

Storck M, Orend KH, Schmitzrixen T. Absorbable suture in vascular surgery. Vascular Surgery. 1993; 27: 413-424. Doi: 10.1177/153857449302700601.

2

Ferreira P, Silva AFM, Pinto MI, Gil MH. Development of a biodegradable bioadhesive containing urethane groups. Journal of Material Science – Materials in Medicine. 2008; 19(1): 111-120. Doi: 10.1007/s10856-007-3117-3.

3

Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997; 388(6645): 860-862. doi: 10.1038/42218.

4

Amsden BG. Biodegradable elastomers in drug delivery. Expert Opinion in Drug Delivery. 2008; 5: 175–187. Doi: 10.1517/17425247.5.2.175

5

Cohn D, Elchai Z, Gershon B, Karck M, Lazarovici G, Sela J, Chandra M, Marom G, Uretzky G. Introducing a selectively biodegradable filament wound arterial prosthesis: A shortterm implantation study. Journal of Bio medical Materials Research. 1992; 26: 1185–1205. Doi: 10.1002/jbm.820260909.

6

Cohn D, Stern T, Gonzalez MF, Epstein J. Biodegradable poly(ethylene oxide)/poly(ε-caprolactone) multiblock copolymers. Journal of Biomedical Materials Research. 2002; 59: 273-281. Doi: 10.1002/jbm.1242.

7

Fernandez M, Jimenez J, Marcos-Fernandez A, Lopez-Bravo A, Roman JS. Biodegradable poly(ester-urethane-urea)s based with amino acids for tissue engineering and drug release. Tissue Engineering Part A. 2008; 14(5):704. Doi: 10.1089/tea.2008.1504.

8

Guelcher SA. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Engineering Part B-Reviews. 2008; 14(1):3-17. Doi: 10.1089/teb.2007.0133.

9

Li SM, Espartero JL, Foch P, Vert M. Structural characterization and hydrolytic degradation of a Zn metal initiated copolymer of L-lactide and ε-caprolactone. Journal of Biomaterials Science-Polymer Edition. 1996; 8(3):165-187. Doi: 10.1163/156856296X00237.

10

Han DK, Park KD, Hubbel JA, Kim YH. Surface characteristics and biocompatibility of lactide-based poly(ethylene glycol) scaffolds for tissue engineering. Journal of Biomaterials Science-Polymer Edition. 1998; 9(7): 667-680. Doi: 10.1163/156856298X00082.

11

Huang MH, Li SM, Hutmacher DW, Schantz JT, Vacanti CA, Braud C, Vert M. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ε-caprolactone in the presence of poly(ethylene glycol). Journal of Biomedical Materials Research Part A. 2004; 69A(3):417-427. Doi: 10.1002/jbm.a.30008.

12

Yen MS, Kuo SC. PCL-PEC-PCL triblock copolydiol-based waterborne polyurethane.1. Effects of the soft-segment composition on the structure and physical properties. Journal of Applied Polymer Science. 1997; 65(5):883-892. Doi: 10.1002/(SICI)1097-4628(19970801)65:5<883::AID-APP5>3.0.CO;2-J.

13

Gorna K, Gogolewski S. In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics with various hydrophilicities. Polymer Degradation and Stability. 2002; 75(1):113-122. Doi: 10.1016/S0141-3910(01)00210-5.

14

Yeganeh H, Jamshidi H, Jamshidi S. Synthesis and properties of novel biodegradable poly(epsilon-caprolactone)/poly(ethylene glycol)-based polyurethane elastomers. Polymer International. 2007; 56(1):41-49. Doi: 10.1002/pi.2107.

15

Lee JW, Hua F, Lee DS. Thermoreversible gelation of biodegradable poly(ε-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. Journal of Controlled Release, 2001; 73(2-3):315-327. Doi: 10.1016/S0168-3659(01)00297-8.

16

Cometa S, Bartolozzi I, Corti A, Chiellini F, De Giglio E, Chiellini E. Hydrolytic and microbial degradation of multi-block polyurethanes based on poly(ε-caprolactone)/poly(ethylene glycol) segments. Polymer Degradation and Stability. 2010; 95: 2013-2021. Doi: 10.1016/j.polymdegradstab.2010.07.007.

17

Cometa S, Chiellini F, Bartolozzi I, Chiellini E, De Giglio E, Sabbatini L. Surface Segregation Assessment in Poly(ε-caprolactone)-poly(ethylene glycol) Multiblock Copolymer Films. Macromolecular Bioscience. 2010; 10(3):317–327. Doi: 10.1002/mabi.200900284.

18

Gan ZH, Zhang J, Jiang B. Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymer Ⅱ. Nonisothermal crystallization and melting behavior. Journal of Applied Polymer Science. 1997; 63 (13): 1793-1804. DOI: 10.1002/(SICI)1097-4628(19970328)63:13<1793::AID-APP12>3.0.CO;2-#.

19

Wellen RMR, Rabello MS. The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate). Journal of Materials Science. 2005; 40(23):6099-6104. DOI: 10.1007/s10853-005-3173-3.

20

Hatakeyma T, Kasuga H, Tanaka M, Hatakeyama H. Cold crystallization of poly(ethylene glycol)-water systems. Thermochimica Acta. 2007; 465(1-2):59-66. Doi: 10.1016/j.tca.2007.09.005.

21

Bogdanov B., Vidts A., Van Den Bulcke A., Verbeeck R. and Schacht E. (1998) Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymers. Polymer. 39(8-9):1631-1636. Doi: 10.1016/S0032-3861(97)00444-8.

22

Bogdanov B, Vidts A, Schacht E, Berghmans H. Isothermal crystallization of poly(ε-caprolactone-ethylene glycol) block copolymers. Macromolecules. 1999; 32(3): 726-731. Doi: 10.1021/ma980226a.

23

Zhu WP, Xie WH, Tong XW, Shen ZQ. Amphiphilic biodegradable poly(CL-b-PEG-b-CL) triblock copolymers prepared by novel rare earth complex: Synthesis and crystallization properties. European Polymer Journal. 2007; 43:3522-3530. Doi: 10.1016/j.eurpolymj.2007.04.024.

24

Khambatta FB, Warner F, Russel T, Stein RS. Small-angle X-ray and light scattering studies of morphology of blends of poly(ε-caprolactone) with polyvinyl-chloride. Journal of Polymer Science B -Polymer Physics Edition. 1976; 14(8):1391-1424. Doi: 10.1002/pol.1976.180140805.

25

Persenaire O, Alexandre M, Degée P, Dubois P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules. 2001; 2(1):288-294. Doi: 10.1021/bm0056310.

26

Cicotte KN, Hedberg-Dirk EL, Dirk SM. Synthesis and electrospun fiber mats of low Tg poly(propylene fumerate-co-propylene maleate). Journal of Applied Polymer Science. 2010;117(4): 1984-1991. Doi: 10.1002/app.32014.

27

Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Möller M. Melt electrospinning of poly(ethylene glycol-block-ε-caprolactone). Biotechnology Journal. 2006; 1:998-1006. Doi: 10.1002/biot.200600064.

28

Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Moeller M. Electrospinning of polymer melts: phenomenological observations. Polymer. 2005; 48: 6823-6833. Doi: 10.1016/j.polymer.2007.09.037.

29

Grafahrend D, Lleixa Calvet J., Salber J., Dalton P.D., Moeller M. and Klee D. (2008) Biofunctionalized poly(ethylene glycol)-blockpoly(epsilon-caprolactone) nanofibers for tissue engineering. Journal of Materials Science: Materials in Medicine, 19:1479-1484. Doi: 10.1007/s10856-007-3299-8.

30

Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008; 49: 2387-2425. Doi: 10.1016/j.polymer.2008.02.002.

31

Shin YM, Hohman MM, Brennerc MP, Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001; 42(25): 9955-9967. Doi: 10.1016/S0032-3861(01)00540-7.

32

Ndreu A, Nikkola ANL, Ylikauppila H, Ashammakhi N, Hasirci V. Electrospun Biodegradable Nanofibrous Mats for Tissue engineering. Nanomedicine. 2008 3(1): 45-60. Doi:10.2217/17435889.3.1.45.

Nano Biomedicine and Engineering
Pages 86-94
Cite this article:
Bartolozzi I, Cometa S, Errico C, et al. Multiblock Polyurethanes Based on Biodegradable Amphiphilic Poly(ε-caprolactone)/Poly(ethylene glycol) Segments as Candidates for Tissue Engineering Applications. Nano Biomedicine and Engineering, 2011, 3(2): 86-94. https://doi.org/10.5101/nbe.v3i2.p86-94

359

Views

18

Downloads

6

Crossref

7

Scopus

Altmetrics

Published: 30 June 2011
© 2011 Irene Bartolozzi, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return