AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (911.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Hepatocarcinoma Single Cell Migration on Micropatterned PDMS Substrates

Bin Zheng1Shu-Ling Hsieh2Chih-Chung Wu3Chun-Hsin Wu4Pei-Ying Lin5Chiung-Wen Hsieh5I-Tin Li5Yun-Shan Huang6Huay-Min Wang7Shuchen Hsieh5( )
School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People’s Republic of China
Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, 71101 Taiwan
Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
Department of Chemistry, Center for Nanoscience and Nanotechnology, National Sun Yat-sen University Kaohsiung, Taiwan
Department of Food Science and Technology, Tajen University, Pingtung, 90741,Taiwan
Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
Show Author Information

Abstract

Cell migration influences many normal and pathological processes and is one of key issues addressed in cancer research studies. In this report, a plasma patterned polydimethylsiloxane (PDMS) substrate was used to selectively position hepatocarcinoma cells in order to characterize their migration behavior. We observed that cell mobility was directly related to the differentiation stage of the cells, with poorly-differentiated (SK-Hep-1) cells exhibiting higher mobility that well-differentiated (Hep-G2) cells. We propose that this difference occurs due to a loss of adhesion molecules presented at the apical membranes of the poorly-differentiated SK-Hep-1 cells, thereby reducing their adhesion to the surface. Our results provide new insight into the relationship between carcinoma cell differentiation grade and mobility. Further this experimental process may provide a simple and effective model for universal cell biology studies and applications in microsystems technology.

References

1

Matsuo N, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Tanaka S, Nishina S, Nakanishi Y, Uemura M, Takaki A, Nakamura S, Kobayashi Y, Nouso K, Yagi T and Yamamoto K. Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC cancer 2009; 9: 240. doi: 10.1186/1471-2407-9-240.

2

Cai AQ, Landman KA and Hughes BD. Modelling directional guidance and motility regulation in cell migration. Bull. Math. Biol. 2006; 68: 25-52. doi: 10.1007/s11538-005-9028-x.

3

Vernon RB and Gooden MD. New technologies in vitro for analysis of cell movement on or within collagen gels. Matrix Biol. 2002; 21: 661-669. doi: 10.1016/S0945-053X(02)00091-4.

4

Takagi H, Sato MJ, Yanagida T and Ueda M. Functional analysis of spontaneous cell movement under different physiological conditions. PLoS ONE 2008; 3: e2648. doi: 10.1371/journal.pone.0002648.

5

De Hauwer C, Camby I, Darro F, Decaestecker C, Gras T, Salmon I, Kiss R and Van Ham P. Dynamic characterization of glioblastoma cell motility. Biochem. Biophys. Res. Commun. 1997; 232: 267-272. doi: 10.1006/bbrc.1997.6291.

6

Yousaf MN. Model substrates for studies of cell mobility. Curr. Opin. Chem. Biol. 2009; 13: 697-704. doi: 10.1016/j.cbpa.2009.10.001..doi:10.1016/j.cbpa.2009.10.001.

7

Niggemann B, Drell Iv TL, Joseph J, Weidt C, Lang K, Zaenker KS and Entschladen F. Tumor cell locomotion: Differential dynamics of spontaneous and induced migration in a 3D collagen matrix. Exp. Cell. Res. 2004; 298: 178-187. doi: 10.1016/j.yexcr.2004.04.001.

8

Chon JH, Vizena AD, Rock BM and Chaikof EL. Characterization of single-cell migration using a computer-aided fluorescence timelapse videomicroscopy system. Anal. Biochem. 1997; 252: 246-254. doi: 10.1006/abio.1997.2321.

9

Hou S, Yang K, Qin M, Feng XZ, Guan L, Yang Y and Wang C. Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Biosens. Bioelectron. 2008; 24: 912-916. doi: 10.1016/j.bios.2008.07.045

10

Kikuchi K, Sumaru K, Edahiro JI, Ooshima Y, Sugiura S, Takagi T and Kanamori T. Stepwise assembly of micropatterned co-cultures using photoresponsive culture surfaces and its application to hepatic tissue arrays. Biotechnol. Bioeng. 2009; 103: 552-561. doi: 10.1002/bit.22253.

11

Rhee SW, Taylor AM, Cribbs DH, Cotman CW and Jeon NL. External force-assisted cell positioning inside microfluidic devices. Biomed. Microdevices 2007; 9: 15-23. doi: 10.1007/s10544-006-9002-x.

12

Tamura T, Sakai Y and Nakazawa K. Two-dimensional microarray of HepG2 spheroids using collagen/polyethylene glycol micropatterned chip. J. Mater. Sci. -Mater. Med. 2008; 19: 2071-2077. doi: 10.1007/s10856-007-3305-1.

13

Mori R, Sakai Y and Nakazawa K. Micropatterned organoid culture of rat hepatocytes and HepG2 cells. J. Biosci. Bioeng. 2008; 106: 237-242. doi: 10.1263/jbb.106.237.

14

Falconnet D, Csucs G, Michelle Grandin H and Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006; 27: 3044-3063. doi: 10.1016/j.biomaterials.2005.12.024.

15

Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR and Vacanti JP. Microfabrication technology for vascularized issue engineering. Biomed. Microdevices 2002; 4: 167-175. doi: 10.1023/A:1016040212127.

16

De Silva MN, Desai R and Odde DJ. Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomed. Microdevices 2004; 6: 219-222. doi: 10.1023/B:BMMD.0000042051.09807.8c.

17

Kim YC, Park SJ and Park JK. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 2008; 133: 1432-1439. doi: 10.1039/b805355c.

18

Zhang S, Lin Y, Altman M, Lässle M, Nugent H, Frankel F, Lauffenburger DA, Whitesides GM and Rich A. Biological surface engineering: A simple system for cell pattern formation. Biomaterials 1999; 20: 1213-1220. doi: 10.1016/S0142-9612(99)00014-9.doi:10.1016/S0142-9612(99)

19

Ogaki R, Alexander M and Kingshott P. Chemical patterning in biointerface science. Mater. Today 2010; 13: 22-35. doi: 10.1016/s1369-7021(10)70057-2.

20

Wong I and Ho CM. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 2009; 7: 291-306. doi: 10.1007/s10404-009-0443-4.

21

Wang L, Lei L, Ni XF, Shi J and Chen Y. Patterning bio-molecules for cell attachment at single cell levels in PDMS microfluidic chips. Microelectron. Eng. 2009; 86: 1462-1464. doi: 10.1016/j.mee.2009.01.030.

22

McFarland CD, Thomas CH, DeFilippis C, Steele JG and Healy KE. Protein adsorption and cell attachment to patterned surfaces. J. Biomed. Mater. Res. 2000; 49: 200-210. doi: 10.1002/(SICI)1097-4636(200002)49:2<200::AID-JBM7>3.0.CO;2-L.

23

Inoue S, Imamura M, Umezawa A and Tabata Y. Attachment, proliferation and adipogenic differentiation of adipostromal cells on self-assembled monolayers of different chemical compositions. J. Biomater. Sci., Polym. Ed. 2008; 19: 893-914. doi: 10.1163/156856208784613541.

24

Frimat JP, Menne H, Michels A, Kittel S, Kettler R, Borgmann S, Franzke J and West J. Plasma stencilling methods for cell patterning. Anal. Bioanal.Chem. 2009; 395: 601-609. doi: 10.1007/s00216-009-2824-7.

25

Hsieh CW, Zheng B and Hsieh S. Ferritin protein imaging and detection by magnetic force microscopy. Chem. Commun. 2010; 46: 1655-1657. doi: 10.1039/b912338e.

26

Hsieh S, Cheng YA, Hsieh CW and Liu Y. Plasma induced patterning of polydimethylsiloxane surfaces. Mater. Sci. Eng., B 2009; 156: 18-23. doi: 10.1016/j.mseb.2008.10.036.

27

Ertel SI, Ratner BD, Kaul A, Schway MB and Horbett TA. In vitro study of the intrinsic toxicity of synthetic surfaces to cells. J. Biomed. Mater. Res. 1994; 28: 667-675. doi: 10.1002/jbm.820280603.

28

Lauffenburger DA and Horwitz AF. Cell migration: A physically integrated molecular process. Cell 1996; 84: 359-369. doi: 10.1016/S0092-8674(00)81280-5.

29

Niggemann B, Maaser K, Lü H, Kroczek R, Zänker KS and Friedl P. Locomotory phenotypes of human tumor cell lines and T lymphocytes in a three-dimensional collagen lattice. Cancer Letters 1997; 118: 173-180. doi: 10.1016/S0304-3835(97)00328-5.

30

Morimitsu Y, Chu Chieh H, Kojiro M and Tabor E. Nodules of lessdifferentiated tumor within or adjacent to hepatocellular carcinoma: Relative expression of transforming growth factor-α and its receptor in the different areas of tumor. Human Pathology 1995; 26: 1126-1132. doi: 10.1016/0046-8177(95)90275-9

31

Chiang PC, Lin SC, Pan SL, Kuo CH, Tsai IL, Kuo MT, Wen WC, Chen P and Guh JH. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: A crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 2010; 79: 162-171. doi: 10.1016/j.bcp.2009.08.022.

32

Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F and Wang N. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stemcells. Nat. Mater. 2010; 9: 82-88. doi: 10.1038/nmat2563.

33

Cao Y, Chang H, Li L, Cheng RC and Fan XN. Alteration of adhesion molecule expression and cellular polarity in hepatocellular carcinoma. Histopathology 2007; 51: 528-538. doi: 10.1111/j.1365-2559.2007.02820.x.

34

Cao Y, Schlag PM and Karsten U. Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, and sialosyl-Tn) in benign and malignant lesions of colonic epithelium: apolar localization corresponds to malignant transformation. Virchows Archiv 1997; 431: 159-166. doi: 10.1007/s004280050083.

Nano Biomedicine and Engineering
Pages 99-106
Cite this article:
Zheng B, Hsieh S-L, Wu C-C, et al. Hepatocarcinoma Single Cell Migration on Micropatterned PDMS Substrates. Nano Biomedicine and Engineering, 2011, 3(2): 99-106. https://doi.org/10.5101/nbe.v3i2.p99-106

329

Views

7

Downloads

2

Crossref

2

Scopus

Altmetrics

Published: 30 June 2011
© 2011 B. Zheng, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return