PDF (1.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Nanorobotics : a Newer Platform for Molecular Diagnose

R Vijayakumar()S JagannathanP Rahul GandhiS Chaansha
Department of Biochemistry, Karpagam Arts and Science College, Coimbatore, Tamilnadu. PIN 641 021 INDIA
Department of Tissue Culture Anti-Rabies Vaccine, Pasteur Institute of India, Coonoor, The Nilgiris, Tamilnadu. PIN 643 103 INDIA
Department of Biotechnology Jamal Mohammed College, Trichirapalli, Tamilnadu. PIN 621 021 INDIA
Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore, Tamilnadu. PIN 641 029 INDIA
Show Author Information

Abstract

The present era of nanotechnology has reached to a stage where scientist are able to develop and programme complex machines that are built at molecular level which can work inside the patient body. One such challenge is a nanorobot, which once thought to be a desire as came into reality now. The proposed application of nanorobot can range from common cold to dreadful diseases like cancer, Diabetes, influenza, cerebral aneurysm. This study of nanorobot serves as a lead to the field of nanomedicine. There are many applications for nanorobotic systems and its biggest impact would be in the area of medicine. This article deals with the nanorobotic design and their applications in molecular diagnosis.

References

1

Jagannathan S, Chaansha S, Rajesh K, Santhiya T, Jayaraj D, Iyappan S R. A novel approaches in delivering immunobiologicals: A Glimpse. Advanced Biotech. 2009; 8(11):22-31.

2

Parakh S R, C Swati C Jagdale, S Namita S Dodwadkar, Kashyap D Savalia.. Nanotechnology. The Indian pharmacist. 2008; 15-18.

3

Kewal K Jain..Applications of Nanobiotechnology in Clinical Diagnostics. Clinical Chemistry, Oak ridge conference. 2007; 53(11):2002-2009.

4
Christine Peterson. Nanomedicine: the most challenging application of advanced nanotechnology, The Frontier of the Invisible. 2004; 21-29.
5
Adrino Cavalcanti et al. 2007 IEEE International conference on Nanotchnology Hardware Architecture for Nanorobot Application in Cerebral Aneurysm.
6

Kumar S S and P S Babu. Nanotechnology. Pharma Times. 2006; 38:18-19.

7

Hellinga H W and F M Richards. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J. Mol. Biol. 1991; 222:763-785.http://dx.doi.org/10.1016/0022-2836(91)90510-D

8

Ummat A, Sharma G, Mavroidis C, Dubey A. Bio-nanorobotics: state of the art and future challenges. In Biomedical engineering handbook, bio-nano robotics, London, United Kingdom: Tissue engineering and artificial organs. 2005; 19:19-42.

9

Adriano Cavalcanti, Bijan Shirinzadeh, Robert A Freitas, Luiz C Kretly. Medical nanorobot architecture based on nanobioelectronics. Recent patents on nanotechnology. 2007; 1(1):1-10.http://dx.doi.org/10.2174/187221007779814745

10

Zhang J, Sabharwal C L, Tao W, Tarn T J, Xi N, and Li G. “Interactive DNA sequence and structure design for DNA nanoapplications”. IEEE Transactions on Nanobioscience. 2004; 3(4):286-292. http://dx.doi.org/10.1109/TNB.2004.837918

11

Adrino Cavalacnti, et al., Nanorobot Hardware Architecture for Medical defense, Sensors. 2008; 8:2932-2958.http://dx.doi.org/10.3390/s8052932

12

Riquicha A A G et al., Manipulation of nanoscale components with the AFM:principles and applications. IEEE. Int. Conf. Natnotechnol., Maui, HI, October 2001; 28-30:2001.

13

Sun Y, Wan K T, Roberts K P, Bischof J C, Nelson B J.Mechanical Property Characterization of the Mouse Zona Pellucida. IEEE Transaction on NanoBioScience. 2003; 2:4-8.

14

Arai F and Fukuda T. 3D Bio Micromanipulation. International Workshop on Microfactoryies IWMF’1998; 98:143-148.

15

Goicoechea J, Zamarreño C R, Matias I R, Arregui F J. Minimizing the photobleaching of self-assembled multilayers for sensor applications. Sens. Actuator B-Chem. 2007; 126 (1):41–47. http://dx.doi.org/10.1016/j.snb.2006.10.037

16

Das S, Gates A J, Abdu H A, Rose G S, Picconatto C A, Ellenbogen J C. Designs for ultra-tiny, special-purpose nanoelectronic circuits. IEEE Trans. Circuits Syst. I-Regul. Pap. 2007; 54 (11):2528–2540. http://dx.doi.org/10.1109/TCSI.2007.907864

17

Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S. Hardware architecture for nanorobot application in cerebral aneurysm. IEEE-Nano 2007 Int. Conf. Nanotechnol. 2007; 237–242

18

Leary S P, Liu C Y, Apuzzo M L I. Toward the emergence of nanoneurosurgery: Part Ⅲ - Nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 2006; 58 (6):1009–1025.http://dx.doi.org/10.1227/01.NEU.0000217016.79256.16

19

Sauer C, Stanacevic M, Cauwenberghs G, Thakor N. Power Harvesting and Telemetry in CMOS for Implanted Devices. IEEE Trans Circ Sys. 2005; 52:2605-2613.http://dx.doi.org/10.1109/TCSI.2005.858183

20

Seeman N C, DNA in a material world. Nature. 2003; 421:427–431. http://dx.doi.org/10.1038/nature01406

21

Smith S B, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996; 271:795-799.http://dx.doi.org/10.1126/science.271.5250.795

22

Mao C, Sun W, Seeman N C. Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Journal of American Chemical Society. 1999; 121:5437-43 http://dx.doi.org/10.1021/ja9900398

23

Pohl F M, Jovin T M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). Journal of Molecular Biology. 1972; 67:375-96 http://dx.doi.org/10.1016/0022-2836(72)90457-3

24

Stracke R, Böhm K J, Burgold J, Schacht H, Unger E. Physical and Technical Parameters Determining the Functioning of a KinesinBased Cell-Free Motor System. Nanotechnology. 2000; 11(2):52-56. http://dx.doi.org/10.1088/0957-4484/11/2/302

25
Onion A. “RoboSnail Tackles Any Terrain - Slime Not Included”, 2006 Technology and Science, ABC News, abcnews.go.com/Technology/story?id=1525599.
26
Cavalcanti A, Hogg T, Shirinzadeh B, Liaw H C. “Nanorobot Communication Techniques: A Comprehensive Tutorial”, 2006. IEEE ICARCV Int’l Conf. on Control, Automation, Robotics and Vision, Grand Hyatt, Singapore.http://dx.doi.org/10.1109/ICARCV.2006.345457
27

Patel G M, Patel G C, Patel R B, Patel J K, Patel M. Nanorobot: a versatile tool in nanomedicine. J. Drug Target. 2006; 14 (2): 63–67 http://dx.doi.org/10.1080/10611860600612862

28
Marchant RE, Zhang T, Qiu Y, Ruegsegger M A. Surfactants that mimic the glycocalyx. 1999. United States patent US 6759388.
29
Wright E M, Sampedro A D, Hirayama BA, Koepsell H, Gorboulev V, Osswald C. Novel glucose sensor. 2005. United States patent US 0267154
30
Freitas Jr RA. Nanomedicine, Vol. I: Basic Capabilities, 1999; Landes Bioscience. http://www.nanomedicine.com/NMI.htm.
31
Ganong W F. "Review of Medical Physiology". Los Alto, 1977; CA: Lange Medical Publications, 8th edition.
32
Chandran K B, Cardiovascular Biomechanics, New York University, 1992; 32-41.
33
Srivastava, N and Banerjee K. “Performance analysis of carbon nanotube interconnects for VLSI applications”, IEEE/ACM ICCAD Int’l Conf. on Computer-Aided Design. 2005; 383-390.
34

Seth S, Vincent A, Compans R W. Activation of fusion by the SER virus F protein: a low-pHdependent paramyxovirus entry process. J. Virol. 2003; 77 (11):6520–6527.http://dx.doi.org/

35

Brouns S J J, Smits N, Wu H, Snijders A P L, Wright P C, Vos W M, Oost J. Identification of a novel α-galactosidase from the hyperthermophilic archaeon sulfolobus solfataricus. J.Bacteriol. 2006; 188 (7):2392–2399.http://dx.doi.org/10.1128/JB.188.7.2392-23992006

36
Vadali Shanthi and Sravani Musunuri. prospects for medical robots. AZojono: journal of nanotechnology online. 2007; 3: 1-9.
37

Robert A. Freitas Jr. “Nanotechnology, Nanomedicine and Nanosurgery”, International Journal of Surgery 2005; 3 (12):1-4.

38
Xu W, Vijaykrishnan N, Xie Y, Irwin M J. “Design of a nanosensor Array Architecture”, ACM Proceedings of the 14th ACM Great Lakes symposium on VLSI, 2004; 298-303, Boston, Massachusetts, USA.
39

Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature. 2004; 429(6990):423-429.http://dx.doi.org/10.1038/nature02551

40
Mathieu J B, Martel S, Yahia L H, Soulez G, Beaudoin G. 2003: MRI Systems as a Mean of Propulsion for a Microdevice in Blood Vessels. EMBC 2003.
41
Robert A. Freitas, Jr. Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX (2005); http://www.nanomedicine.com/NMIIA.htm.
42
Cavalcanti A, Freitas Robert A Jr, Kretly Luiz C. 2004. Nanorobotics control design: a practical approach tutorial. ASME 28th Biennial Mechanisms and Robotics Conference, Salt Lake City Utah, USA.
Nano Biomedicine and Engineering
Pages 192-201
Cite this article:
Vijayakumar R, Jagannathan S, Rahul Gandhi P, et al. Nanorobotics : a Newer Platform for Molecular Diagnose. Nano Biomedicine and Engineering, 2011, 3(3): 192-201. https://doi.org/10.5101/nbe.v3i3.p192-201
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return