AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (935 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
New Views | Open Access

Microfluidic PCR Chips

Jingdong Chen1Di Chen1( )Tao Yuan1Xiang Chen2
National Key Laboratory of Science and Technology on Micro/Nano Fabrication Technology
Key Laboratory for Thin Film and Microfabrication of the Ministry of Education Research Institute of Mico/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Abstract

The microfluidic polymerase chain reaction (PCR) chips have undergone extensive development and nowadays have become an important domain of miniaturization technology application. Here, we review the advances of microfluidic PCR chips over the past years, from the first single chamber stationary PCR chip to the new SlipChip PCR. First, the three distinct types of microfluidic PCR chips are discussed, including chamber stationary PCR chips, flow-through PCR chips and convection PCR chips. Then we focus on droplet PCR chips and SlipChip PCR. Although they are at an early stage, they show the great potential for high-throughput PCR and robust chip. Finally, general discussions on integrated chips are given. The low cost, portable, high-throughout integrated PCR chips will certainly be further developed in spite of many challenges.

References

[1]

Manz A, Graber N, Widmer HM, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B 1990; 1: 244-248.doi: 10.1016/0925-4005(90)80209-I

[2]

DeMello AJ. Control and detection of chemical reactions in microfluidic systems. Nature 2006; 442: 394-402. doi: 10.1038/nature05062

[3]

Baek SH, Chang WJ, Baek JY, Yoon DS, Bashir R, Lee SW. Dielectrophoretic Technique for Measurement of Chemical and Biological Interactions. Anal Chem 2009; 81: 7737-7742.doi: 10.1021/ac901211b

[4]

Huang B, Wu HK, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN. Counting low- copy number proteins in a single cell. Science2007; 315: 81-84. doi: 10.1126/science.1133992

[5]

Zare RN, Kim S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 2010; 12:187-201. doi: 10.1146/annurev-bioeng-070909-105238

[6]

Sato K, Mawatari K, Kitamori T. Microchip-based cell analysis and clinical diagnosis system.Lab Chip 2008; 8: 1992-1998. doi: 10.1039/B814098G

[7]

Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov. 2006; 5: 210-218. doi: 10.1038/nrd1985

[8]

Gardeniers JGE, van den Berg A. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem 2004; 378: 1700-1703.doi: 10.1007/s00216-003-2435-7

[9]

Saiki RK, Scharf F, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985; 230: 1350-1354. doi: 10.1126/science.2999980

[10]
Northrup MA, Ching MT, White RM, Watson RT. DNA amplification in a microfabricated reaction chamber. In tranducer’93, seventh international conference on solid state Sens Actuators, Yokohama, Japan. ISBN: 4-9900247-2-9. 1993; 924-926.
[11]

Kricka LJ, Wilding P. Microchip PCR. Anal Bioanal Chem 2003;377: 820-825. doi: 10.1007/s00216-003-2144-2

[12]

Zhang CS, Xing D. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res.2007; 35: 4223-4237. doi: 10.1093/nar/gkm389

[13]

Ong SE, Zhang S, Du HJ, Fu YQ. Fundamental principles and applications of microfluidic systems. Frontiers Biosci. 2008;13: 2757-2773. doi: 10.2741/2883

[14]

Zhang YH, Ozdemir P. Microfluidic DNA amplification-A review. Anal. Chim. Acta 2009; 638: 115-125. doi: 10.1016/j.aca.2009.02.038

[15]

Shin YS, Cho K, Lim SH, Chung S, Park SJ, Chung C, Han DC, Chang JK. PDMS-based micro PCR chip with parylene coating. J. Micromech. Microeng. 2003; 13: 768-774. doi: 10.1088/0960-1317/13/5/332

[16]
El-Ali J, Perch-Nielsen IR, Poulsen CR, Bang DD,Telleman P, Wolff A. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor. Sens. Actuators A 2004; 110: 3-10. doi: 10.1016jsna.2003.09.022
[17]

Pasquardini L, Potrich C, Quaglio M, Lamberti A, Guastella S, Lunelli L, Cocuzza M, Vanzetti L,Pirri CF, Pederzolli C. Solid phase DNA extractionon PDMS and direct amplification. Lab Chip 2011; 11: 4029-4035.doi: 10.1039/c1lc20371a

[18]

Nagai H, Murakami Y, Morita Y, Yokoyama K, Tamiya E. Development of a microchamber array for picoliter PCR. Anal. Chem.2001; 73:1043-1047. doi: 10.1021/ac000648u

[19]

Matsubara Y, Kerman K, Kobayashi M,Yamanura S, Morita Y, Tamiya E. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. Biosens. Bioelectron. 2005; 20:1482-1490. doi: 10.1016/j.bios.2004.07.002

[20]

Zou Q, Miao Y, Chen Y, Sridhar U, Chong CS, Chai T, et al. Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing. Sens. Actuators A 2002;102: 114-121. doi: 10.1016/S0924-4247(02)00384-9

[21]

Cady NC, Stelick S, Kunnavakkam MV, Batt CA. Real-time PCR detectionof Listeria monocytogenes using anintegrated microfluidics platform. Sens. Actuators B.2005; 107: 332-341. doi: 10.1016/j.snb.2004.10.022

[22]

Qiu XB, Mauk MG, Chen DF, Liu CC, Bau HH.A large volume, portable, real-time PCR reactor. Lab Chip 2010; 10: 3170-3177. doi: 10.1039/c0lc00038h

[23]

Daniel JH, Iqbal S, Millington RB, Moore DF, Lowe CR, Leslie DL, et al. Silicon microchambers for DNA amplification. Sen. Actuators A 1998;71: 81-88. doi: 10.1016/S0924-4247(98)00158-7

[24]

Trung NB, Saito M, Takabayashi H, Pham HV, Tamiya E, Takamura, Y. Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sens. Actuators B.2010; 149: 284-290. doi: 10.1016/j.snb.2010.06.013

[25]
Nagai H, Murakami Y, Yokoyama K, Tamiya E. High-throughput PCR in silicon based microchamber array. Biosens. Bioelectron. 2001, 16, 1015. 2001; 16: 1015-1019. doi: 10.1016/S0956-5663(01)00248-2
[26]

Kopp MU, de Mello AJ, Manz A. Chemical Amplification: Continuous-Flow PCR on a Chip. Science 1998; 280: 1046-1048. doi: 10.1126/science.280.5366.1046

[27]

Liu J, Enzelberger M, Quake S. A nanoliter rotary device for polymerase chain reaction Eletrophoresis 2002; 23: 1531-1536. doi: 10.1002/1522-2683(200205)23:10<1531::AID-ELPS1531>3.0.CO;2-D

[28]

Wu WM, Lee NY. Three-dimensional on-chip continuous-flow polymerase chain reaction employing a single heater. Anal. Bioanal. Chem. 2011; 400: 2053-2060. doi: 10.1007/s00216-0114947-x

[29]

Fu LM, Yang RJ, Lee GB, Liu HH. Electrokinetic injection techniques in microfluidic chips. Anal. Chem. 2002; 74: 5084-5091. doi: 10.1021/ac025821w

[30]

Patankar NA, Hu HH. Numerical simulation of electroosmotic flow. Anal. Chem. 1998; 70: 1870-1881. doi: 10.1021/ac970846u

[31]

Gui L, Ren CL. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip. Anal. Chem. 2006;78: 6215-6222. doi: 10.1021/ac060553d

[32]

Furutani S, Nagai H, Takamura Y, Kubo I. Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell. Anal. Bioanal. Chem. 2010; 398: 2997-3004. doi: 10.1007/s00216-010-4205-7

[33]

Focke M, Stumpf F, Faltin B, Reith P, Bamarni D, Wadle S, et al. Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform. Lab Chip 2010; 10: 2519-2526. doi: 10.1039/c004954a

[34]

Sun Y, KwokYC, Nguyen NT. A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab Chip 2007; 7: 1012-1017. doi: 10.1039/b700575j

[35]

Sun Y, Kwok YC, Lee PFP, Nguyen NT. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal. Bioanal. Chem. 2009; 394: 1505-1508.doi: 10.1007/s00216-009-2808-7

[36]

Gonzalez A, Grimes R, Walsh EJ, Dalton T, Davies M. Interaction of quantitative PCR components with polymeric surfaces. Biomed. Microdevices 2007; 9: 261-266. doi: 10.1007/s10544-006-9030-6

[37]

Kolari K, Satokari R, Kataja K, Stenman J, Hokkanen A. Real-time analysis of PCR inhibition on microfluidic materials. Sens. Actuators B 2008; 128: 442-449. doi: 10.1016/j.snb.2007.06.034

[38]

Krishnan M, Ugaz VM, Burns MA. PCR in a Rayleigh-Bénard convection cell. Science 2003; 298:793. doi: 10.1126/science.298.5594.793

[39]

Yao DJ, Chen JR, Ju WT. Micro-Rayleigh-Benard convection polymerase chain reaction system. J. Micro/Nanolith. MEMS MOEMS 2007; 6: 043007. doi: 10.1117/1.28054523

[40]

Chung KH, Choi YH, Jung MY. Natural Convection PCR in a Disposable Polymer Chip. IEEE SENSORS 2009; 1-3: 1159-1162.

[41]

Zhang C, Xu J, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006; 24: 243-284. doi: 10.1016/j.biotechadv.2005.10.002

[42]

Braun D. PCR by thermal convection. Modern Physics Letters B 2004; 18: 775-784. doi: 10.1142/S0217984904007049

[43]

Schneegass I, Brautigam R, Kohler JM.Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 2001; 1: 42-49. doi: 10.1039/b103846j

[44]

Fukuba T, Yamamoto T, NaganumaT, Fujii T. Microfabricated flow-through device for DNA amplification-towards in situ gene analysis. Chem. Eng. J. 2004; 101: 151-156. doi: 10.1016/j.cej.2003.11.016

[45]

Kim JA, Lee JY, Seong S, Cha SH, Lee SH, Kim JJ, Park TH. Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip. Biochem. Eng. J. 2006; 29: 91-97. doi: 10.1016/j.bej.2005.02.032

[46]

Solvas XCI, deMello A. Droplet microfluidics: recent developments and future applications. Chem. Commun. 2011; 47:1936-1942. doi: 10.1039/c0cc02474k

[47]

Günther A, Jhunjhunwala M, Thalmann M,Schmidt MA, Jensen KF. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir. 2005; 211: 547-1555. doi: 10.1021/la0482406

[48]

Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Weitz DA. Electric Control of Droplets in Microfluidic Devices. Angew. Chem. Int. Ed. 2006; 118: 2618-2622. doi: 10.1002/anie.200503540

[49]

Teh SY, Lin R, Hung LH, Lee AP. Droplet microfluidics. Lab Chip 2008; 8: 198-220. doi: 10.1039/b715524g

[50]

Fair RB. Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid.2007; 3:245-281. doi: 10.1007/s10404-007-0161-8

[51]

Niu X, Zhang M, Peng S, Wen W, Sheng P. Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 2007; 1: 044101-044112. doi: 10.1063/1.2795392

[52]

Shi W, Qin J, Ye N, Lin B. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 2008; 8: 1432-1435. doi: 10.1039/b808753a

[53]

Song H, Tice JD, Ismagilov RF, A microfluidic system for controlling reaction networks in time. Angew. Chem. 2003; 115:792-96.doi: 10.1002/ange.200390172

[54]

Pipper J, Inoue M, Ng, LFP, Neuzil P, Zhang Y, Novak L. Catching bird flu in a droplet. Nat. Med. 2007; 13: 1259-1263. doi: 10.1038/nm1634

[55]

Wang W, Li ZX, Luo R, Shu-Hai Lu SH, Xu AD, Yang YJ. Droplet-based micro oscillating-flow PCR chip. J. Micromech. Microeng. 2005;15: 1369-1377. doi: 10.1088/0960-1317/15/8/001

[56]

Mohr S, Zhang YH, Macaskill A, Day PJR, Barber RW, Goddard NJ, et al. Numerical and experimental study of a droplet-based PCR chip. Microfluid. Nanofluid. 2007; 3: 611-621. doi: 10.1007/s10404-007-0153-8

[57]

Wang F, Burns MA. Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed. Microdevices 2009; 11:1071-1080.doi: 10.1007/s10544-009-9324-6

[58]

Trietsch SJ, Hankemeier T, van der Linden HJ. Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review. Chemometr. Intell. Lab.Syst. 2011; 108: 64-75. doi: 10.1016/j.chemolab.2011.03.005

[60]

Schaerli Y, Hollfelder F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. BioSyst. 2009;5: 1392-1404. doi: 10.1039/b907578j

[61]

Leamon JH, Link DR, Egholm M, Rothberg JM.Overview: methods and applications for droplet compartmentalization of biology. Nat. Methods 2006; 3: 541-543. doi: 10.1038/nmeth0706-541

[62]

Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, deMello AJ. Microdroplets: A sea of applications? Lab Chip 2008; 8: 1244-1254. doi: 10.1039/b806405a

[63]

Taly V, Kelly BT, Griffiths AD. Droplets as Microreactors for High-Throughput Biology. ChemBioChem 2007; 8: 263-272. doi: 10.1002/cbic.200600425

[64]

B aret JC, Tally V, Ryckelynck M, Merten CA, Griffiths AD. roplets and emulsions: very high-throughput screening in biology. Med. Sci. 2009; 25: 627-632. doi: 10.1051/medsci/2009256-7627

[65]

Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal. Chem.2008; 80: 8975-8981. doi: 10.1021/ac801276c

[66]

Srisa-Art M, deMello AJ, Edel JB. High-throughput DNA droplet assays using picoliter reactor volumes. Anal. Chem. 2007; 79: 6682-6689. doi: 10.1021/ac070987o

[67]

Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 2011; 11: 3838-3845. doi: 10.1039/c1lc20561g

[68]

Du WB, Li L, Nichols KP, Ismagilov RF. SlipChip. Lab Chip 2009; 9:2286-2292. doi: 10.1039/b908978k

[69]

Li L, Du WB, Ismagilov RF. User-Loaded SlipChip for Equipment-Free Multiplexed Nanoliter-Scale Experiments. J. Am. Chem. Soc. 2010; 132: 106-111. doi: 10.1021/ja908555n

[70]

Belder D, Screening in One Sweep using the Slipchip. Angew. Chem. Int. Ed. 2010; 49: 6484-6486. doi: 10.1002/anie.201002059

[71]

Li L, Du WB, Ismagilov RF. Multiparameter Screening on SlipChip Used for Nanoliter Protein Crystallization Combining Free Interface Diffusion and Microbatch Methods. J. Am. Chem. Soc. 2010; 132: 112-119. doi: 10.1021/ja908558m

[72]

Li L, Ismagilov RF. Protein Crystallization Using Microfluidic Technologies Based on Valves, Droplets, and SlipChip. Annu. Rev. Biophys. 2010; 39:139-158. doi: 10.1146/annurev.biophys.050708.133630

[73]

Liu WS, Chen DL, Du WB, Nichols KP, Ismagilov RF.SlipChip for Immunoassays in Nanoliter Volumes. Anal. Chem. 2010: 82: 3276-3282. doi: 10.1021/ac100044c

[74]

Shen F, Du WB, Kreutz JE, Fok A, Ismagilov RF. Digital PCR on a SlipChip. Lab Chip 2010; 10: 2666-2672. doi: 10.1039/c004521g

[75]

Shen F, Du WB, Davydova EK, Karymov MA, Pandey J, Ismagilov RF. Nanoliter Multiplex PCR Arrays on a SlipChip. Anal. Chem. 2010; 82: 4606-4612. doi: 10.1021/ac1007249

[76]

Shen F, Davydova EK, Du WB, Kreutz JE, Piepenburg O, Ismagilov RF. Digital Isothermal Quantification of Nucleic Acids via Simultaneous Chemical Initiation of Recombinase Polymerase Amplification Reactions on SlipChip. Anal. Chem. 2011; 83: 3533-3540. doi: 10.1021/ac200247e

[77]

Yuen PK, Kricka LJ, Fortina P, Panaro NJ, Sakazume T, Wilding P. Microchip module for blood sample preparation and nucleic acid amplification reactions.Genome Res. 2001; 11:405-412. doi: 10.1101/gr.155301

[78]

Ferrance JP, Wu QR, Giordano B, Hernande C, Kwok Y, Snow, K, et al. Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Analytica Chimica Acta 2003; 500: 223-236. doi: 10.1016/j.aca.2003.08.067

[79]

Liu RH, Yang JN, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection Anal. Chem. 2004; 76: 1824-1831. doi: 10.1021/ac0353029

[80]

Hong JW, Studer V, Hang G, Anderson WF,Quake SR. A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 2004; 22: 435-439. doi: 10.1038/nbt951

[81]

Chen L, Manz A, Day PJR. Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 2007; 7: 1413-1423. doi: 10.1039/b708362a

[82]

Lui C, Cady NC, Batt CA. Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors 2009; 9:3713-3744; doi: 10.3390/s90503713

[83]

Zhang CS, Xing D, Li YY. Micropumps,microvalves, and micromixers within PCR microfluidic. chips: Advances and trends. Biotech. Adv. 2007; 25: 483-514. doi: 10.1016/j.biotechadv.2007.05.003

[84]

Laser DJ, Santiago JG. A review of micropumps.J.Micromech. Microeng. 2004; 14:R35-R64. doi: 10.1088/0960-1317/14/6/R01

[85]

Nguyen NT, Wu ZG. Micromixers-a review. J.Micromech. Microeng. 2005; 15: R1-R16. doi: 10.1088/0960-1317/15/2/R01

[86]

Oh KW, Ahn CH. A review of microvalves. J. Micromech. Microeng. 2006; 16: R13-R39. doi: 10.1088/0960-1317/16/5/R01

Nano Biomedicine and Engineering
Pages 203-210
Cite this article:
Chen J, Chen D, Yuan T, et al. Microfluidic PCR Chips. Nano Biomedicine and Engineering, 2011, 3(4): 203-210. https://doi.org/10.5101/nbe.v3i4.p203-210

359

Views

2

Downloads

3

Crossref

0

Scopus

Altmetrics

Published: 31 December 2011
© 2011 J. Chen, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return