AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (574 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Delivery of Gold Nanoparticles Inside Carbon Nanotubes by Oligonucleotides

Daxiang Cui1,2( )Cengiz S. Ozkan3Furong Tian2Yong Kong2
Department of Bio-Nanoscience and Engineering, National Key laboratory Of Micro-Nano Fabrication Technology, Institute of Micro-Nano Science and Technology, Shanghai JiaoTong university, 800Dongchuan Road, Shanghai 200240, P.R.China
Max Plank Institute for Metals Research, Heisenbergstr. 3, 70569, Stuttgart, Germany
Department of Mechanical Engineering, University of California, Riverside, CA 92521-0425, USA
Show Author Information

Abstract

Delivery of gold nanoparticles with 2 nm or so in diameter inside multiwall carbon nanotubes (MCNTs) by oligonucleotides was performed under the condition of 400 k and 3 bar for 20 min. The Au-oligo-CNT complexes were first purified via 1% agarose gel electrophoresis and then analyzed via high resolution transmission electron microscopy (HR-TEM) and energy dispersive X–ray spectroscopy (EDX). The results showed that the excess of oligonucleotides, Au nanopartilces and the Au-oligo hybrids attached to the outside walls of CNTs could be removed away by agarose gel electrophoresis. HR-TEM and EDX results demonstrated that 2% or so Au-oligo hybrids were successfully delivered inside MCNTs. In contrast, few Au nanopartilces were observed to locate inside CNTs under identical experimental conditions. This is the very first confirmation that oligonucleotides can be used to deliver Au nanoparticles inside MCNTs. The van der Waals attraction between CNT and Au-oligo hybrids is likely the main driving force for this phenomenon. This phenomenon has potential applications in future nanotechnology such as molecular electronics, biochemical sensors, nano-devices, gene storage and delivery systems.

References

[1]

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348):56-58.http://dx.doi.org/10.1038/354056a0

[2]

Cui DX. Advances and prospects on biomolecules functionalized carbon nanotubes. Journal of Nanoscience and Nanotechnolgy. 2007; 7:1298-1314. http://dx.doi.org/10.1166/jnn.2007.654

[3]

Cui DX, Pan BF, Zhang H, Gao F, Wu R, Wang JP, et al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Analytical Chemistry. 2008;80:7996-8001.http://dx.doi.org/10.1021/ac800992m

[4]

Cui D, Tian F, Kong Y, Gao H. Effects of single wall carbon nanotubes on PCR. Nanotechnology. 2004; 15: 154. http://dx.doi.org/10.1088/0957-4484/15/1/030

[5]

Pan BF, Cui DX, Xu P, Chen H, Liu FT, Li Q, et al. Design of dendrimer modified carbon nanotubes for gene delivery. Chinese Journal of Cancer Research. 2007; 19:1-6.http://dx.doi.org/10.1007/s11670-007-0001-0

[6]

Huang P, Zhang C, Xu C, Bao L, Li Z. Preparation and characterization of near infrared region absorption enhancer carbon nanotubes hybridmaterials. Nano Biomed Eng. 2010; 2:225-230. http://dx.doi.org/10.5101/nbe.v2i4.p225-230

[7]

Yuan HG, Hu SL, Huang P, Song H, Wang K, Ruan J, et al. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells. Nanoscale Research Letters. 2010; 6.

[8]

Pan BF, Cui DX, Ozkan CS, Ozkan M, Xu P, Huang T, et al. Effects of carbon nanotubes on photoluminescence properties of quantum dots. Journal of Physical Chemistry C. 2008;112:939-944. http://dx.doi.org/10.1021/jp068920c

[9]

Cui DX, Tian FR, Coyer SR, Wang JC, Pan BF, Gao F, et al. Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. Journal of Nanoscience and Nanotechnology. 2007;7: 1639-1646.http://dx.doi.org/10.1166/jnn.2007.348

[10]

Cui DX, Zhang H, Sheng J, Wang Z, Toru A, He R, et al. Effects of CdSe/ZnS quantum dots covered multi-walled carbon nanotubes on murine embryonicstem cells Nano Biomed Eng. 2010;2:236-244.

[11]

Chen RJ, Bangsaruntip S, Drouvalakis KA, Wong SKN, Shim M, Li Y, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA. 2003;100:4984.http://dx.doi.org/10.1073/pnas.0837064100

[12]

Xu P, Cui DX, Pan BF, Gao F, He R, Li Q, et al. A facile strategy for covalent binding of nanoparticles onto carbon nanotubes. Applied Surface Science.2008;254:5236-5240.http://dx.doi.org/10.1016/j.apsusc.2008.02.082

[13]

Erlanger F, Chen B, Zhu M, Brus L. Binding of an Anti-Fullerene IgG Monoclonal Antibody to Single Wall Carbon Nanotubes. Nano Lett. 2001;1:465.http://dx.doi.org/10.1021/nl015570r

[14]

Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara, H, et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000; 85:5384.http://dx.doi.org/10.1103/PhysRevLett.85.5384

[15]

Hummer G, Rasalah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 2001; 414: 188.http://dx.doi.org/10.1038/35102535

[16]

Bashir, R. DNA-mediated artificial nanobiostructures: state of the art and future directions. Superlattices and Microstructures 2001, 29, 1. http://dx.doi.org/10.1006/spmi.2000.0904

[17]

Keren K, Berman RS, Buchstab E, Sivan U, Braun E. DNA-templated carbon nanotube field-effect transistor. Science 2003;302:1380.http://dx.doi.org/10.1126/science.1091022

[18]

Warner MG, Hutchison JE. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Materials 2003;2:272.http://dx.doi.org/10.1038/nmat853

[19]

Shim M, Kam NMS, Chen RJ, Li R, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002;2;285. http://dx.doi.org/10.1021/nl015692j

[20]

Chen RJ, Zhang YG, Wang DW, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001;123;3838. http://dx.doi.org/10.1021/ja010172b

[21]

Zheng M, Jagota A, Strano MS, Santos AP, Barone P.et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science. 2003;302:1545.http://dx.doi.org/10.1126/science.1091911

[22]

Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials. 2003;2:338.http://dx.doi.org/10.1038/nmat877

[23]

Gao H, Kong Y, Cui D, Ozkan OS. Spontaneous Insertion of DNA Oligonucleotides into Carbon Nanotubes. Nano Lett. 2003;3: 471.http://dx.doi.org/10.1021/nl025967a

[24]

Cui D, Ozkan CS, Ravindran S, Kong Y, Gao H. Encapsulation of pt-labelled DNA molecules inside carbon nanotubes. Mechanics and Chemsitry of Biosystem. 2004;1(2): 113-121.

[25]

Bahr JL; Tour JM. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002;12:1952.http://dx.doi.org/10.1039/b201013p

[26]

Harnack O, Ford WE, Yasuda A and Wessels JM. Tris(hydroxymethyl)phosphine-Capped Gold Particles Templated by DNA as Nanowire Precursors. Nano Lett. 2002; 2: 919. http://dx.doi.org/10.1021/nl020259a

[27]

Christopher FM, Adam TW. DNA-Templated Construction of Copper Nanowires. Nano Lett. 2003;3:359.http://dx.doi.org/10.1021/nl034016+

[28]

Mertig M, Ciacchi L C, Seidel R, Pompe W and De Vita A. DNA as a Selective Metallization Template. Nano Lett. 2002;2:841. http://dx.doi.org/10.1021/nl025612r

[29]

Sato Y, Mizutani F. Formation and characterization of aromatic selenol and thiol monolayers on gold: in-situ IR studies and electrochemical measurements. Phys. Chem. Phys. 2004;6;1328. http://dx.doi.org/10.1039/b315034h

[30]

Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A laboratory manual 2 nd ed, Cold Spring Harbor Laboratory Press, USA. 1998.

[31]

Grossman PD, Soane DS. Capillary electrophoresis of DNA in entangled polymer solutions. J. Chromatogr.1991;559:257. http://dx.doi.org/10.1016/0021-9673(91)80076-S

[32]

Kepka C, Rhodin J, Lemmens R, Tjerneld F, Gustavsson P E. Extraction of plasmid DNA from Escherichia coli cell lysate in a thermoseparating aqueous two-phase system. J. Chromatogr A. 2004;1024:95.http://dx.doi.org/10.1016/j.chroma.2003.10.028

[33]

Cui D, Tian F, Ozkan CS, Wang M,Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology Letters. 2005;5:73.http://dx.doi.org/10.1016/j.toxlet.2004.08.015

[34]

Pan BF, Cui DX, Xu P, Ozkan C, Feng G, Ozkan M, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. 2009; 20 : 12http://dx.doi.org/10.1088/0957-4484/20/12/125101

Nano Biomedicine and Engineering
Pages 243-248
Cite this article:
Cui D, Ozkan CS, Tian F, et al. Delivery of Gold Nanoparticles Inside Carbon Nanotubes by Oligonucleotides. Nano Biomedicine and Engineering, 2011, 3(4): 243-248. https://doi.org/10.5101/nbe.v3i4.p243-248

283

Views

10

Downloads

0

Crossref

0

Scopus

Altmetrics

Published: 31 December 2011
© 2011 D. Cui, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return