AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances of Nanotechnology Applied to Biosensors

Chen GuiXuan DaiDaxiang Cui( )
Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, National Key Laboratory of Micro /Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
Show Author Information

Abstract

Up to date, application of nanomaterials and nanotechnology has made great advances. Many novel nanomaterials with unique properties are increasingly being exploited to apply for biosensors, improving the property of biosensor and making them higher selectivity and sensitivity, less response time and lower detective limitation. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the amin of promting to develop nanomaterials-based biosensor nanotechnology and improving their application in disease diagnosis and biosafety examination.

References

[1]
Reshetilov N and Bezborodov AM. Nanobiotechnology and BiosensorResearch. Applied Biochemistry and Microbiology. 2008; 44:1-5. http://dx.doi.org/10.1134S0003683808010018
[2]

Viswanathan S, Radecki J. Nanomaterials in electrochemical biosensorsfor food analysis û a review. Polish Journal of Food and Nutrition Sciences year. 2008; 58(2):157-164

[3]
Katz E, Willner I, Chem J. Electroanal.2004; 16: 19. http://dx.doi.org/10.1002/elan.200302930
[4]
Chen RS, Huang WH, Tong H, Wang ZL, Cheng JK. Anal. Chem. 2003;75: 6341. http://dx.doi.org/10.1021/ac0340556
[5]
Valentini F, Amine A., Orlanducci S, Terranova ML, Palleschi G. Anal. Chem.2003;75: 5413. http://dx.doi.org/10.1021/ac0300237
[6]

Liang KZ, Qi JS, Mu WJ, Chen ZG. Biomolecules/gold nanowires-doped sol-gel film for label-free electrochemical immunoassay of testosterone. Biochem.Biophys.Methods. 2008;70:1156-1162. http://dx.doi.org/10.1016/j.jprot.2007.11.007

[7]

He X L, Yuan R, Chai Y Q, Shi Y T. A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Auchitosan composite as immobilization matrix. Biochem.Biophys.Methods.2008;70: 823-829. http://dx.doi.org/10.1016/j.jbbm.2007.06.002

[8]

Kim GY,Shim J,Kang MS,Moon SH.Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples. Journal of Hazardous Materials. 2008; 156:141-147. http://dx.doi.org/10.1016/j.jhazmat.2007.12.007

[9]

Asowicz M,Viswanathan S,Dvornyk A, Krystyna Grzelak, Barbara Kłudkiewicz, Hanna Radecka, Comparisonof electrochemical immunosensors based on gold nano materials and immunoblot techniques for detection of histidine-tagged proteins in culture medium. Biosensors and Bioelectronics. 2008;24:284-289. http://dx.doi:10.1016/j.bios.2008.04.002

[10]

Jena BK,Raj CR. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosensors and Bioelectronics.2008;23:1285-1290. http://dx.doi.org/10.1016/j.bios.2007.11.014

[11]

Zhao W, Chiuman W, Lam JC, Brook MA, Li Y. Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem.Commun. 2007;3729-3731. http://dx.doi.org/10.1039/b705335e

[12]

Wei H,Li Bl,Li J,WangE,andDongSJ Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle. Chem.Commun. 2007;3735-3737. http://dx.doi.org/10.1039/b707642h

[13]

Zheng Y, Lin XQ. Modified Electrode Based on Immobilizing Horseradish Peroxidase on nano-Gold with Choline Covalently Modified Glassy Carbon Electrode as a Base. Chin J AnalChem. 2008;36(5):604-608. http://dx.doi.org/10.1016/S18722040(08)60034-1

[14]

Chai R,Yuan R,Chai YQ,Ou CF,Cao SR, Li XL, Amperometric immunosensors based on layer-by- layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta. 2008;74:1330-1336. http://dx.doi.org/10.1016/j.talanta.2007.08.046

[15]

Li NB,Park JH,Park K,Kwon SJ, Shin H,Kwak J. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosensors and Bioelectronics. 2008;23:1519-1526. http://dx.doi.org/10.1016/j.bios.2008.01.009

[16]

Shi AW,Qu FL,Yang MH,Shen GL,Yu RQ. Amperometric H2O2 biosensor based on poly-thionine nanowire/HRP/nano-Au-modified glassy carbon electrode. Sensors and ActuatorsB. 2008;129:779-783. http://dx.doi.org/10.1016/j.snb.2007.09.062

[17]

Cui RJ,Huang HP, Yin ZZ, Gao D,Zhu JJ.Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics. 2008;23:1666-1673. http://dx.doi.org/10.1016/j.bios.2008.01.034

[18]

MinWang, Zhuyun Li. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensors and Actuators B. 2008;133:607-612.http://dx.doi:10.1016/j.snb.2008.03.023

[19]

Manesh KM, Kim HT,Santhosh P,Gopalan AI, Lee KP. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosensors and Bioelectronics. 2008;23: 771-779. http://dx.doi.org/10.1016/j.bios.2007.08.016

[20]

Zeng JX, Wei WZ, Liu XY, Wang Y, Luo GM. A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly(1,2-diaminobenzene) based glucose biosensor. Microchim Acta.2008; 160:261-267. http://dx.doi.org/10.1007/s00604-007-0818-8

[21]

Muguruma H, Shibayama Y, Matsui Y. An amperometric biosensor based on a composite of single-walled carbonnanotubes, plasma-polymerized thin film, and an enzyme. Biosensors and Bioelectronics 2008;23: 827-832. http://dx.doi.org/10.1016/j.bios.2007.08.024

[22]

Li G, Xu H, Huang WJ, Wang Y, Wu YS, Parajuli R. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes. Meas. Sci.Technol. 2008;19:065203.

[23]

Muguruma H,Shibayama Y, Matsui Y, An amperometric biosensor based on a composite of single-walled carbonnanotubes, plasma-polymerized thin film, and an enzyme. Biosensors and Bioelectronics. 2008;23:827-832. http://dx.doi.org/10.1016/j.bios.2007.08.024

[24]

Galandova J, Ziyatdinova G and Labuda J. Disposable Electrochemical Biosensor with Multiwalled Carbon Nanotubes—Chitosan Composite Layer for the Detection of Deep DNA Damage. Analytical Sciences. 2008;24(6):711.

[25]

Zhang W, Yang T, Huang DM, Jiao K.Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chinese Chemical Letters. 2008;19:589-591. http://dx.doi.org/10.1016/j.cclet.2008.03.012

[26]

Weeks ML, Rahman T, Frymier PD, Islam SK, McKnight TE. A eagentless enzymatic amperometricbiosensor using vertically aligned carbon nanofibers (VACNF). Sensors and Actuators B. 2008;133: 53-59

[27]

Bai HP,Lu XX,Yang MM,Yang YH. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode. Chinese Chemical Letters. 2008;19:314-318. http://dx.doi.org/10.1016/j.cclet.2007.12.030

[28]

Zhang SH, Shan LG, Tian ZR, Zheng Y,Shi LY, Zhang DS. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue. Chinese Chemical Letters. 2008;19:592-594. http://dx.doi.org/10.1016/j.cclet.2008.03.014

[29]

Liu G, Lin Y. Amperometric glucose biosensor based on elf-assembling glucose oxidase on carbon nanotubes. Electrochem. Commun. 2006;8:251.http://dx.doi.org/10.1016/j.elecom.2005.11.015

[30]

Zhao H, Huang J. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal. Biochem. 2006;350:138. http://dx.doi.org/10.1016/j.ab.2005.11.034

[31]

Yang MH, Qu FL, Lu YS, Shen GL, Yu RQ. In situ chemical reductive growth of platinum nanoparticles on glass slide for the mass fabrication of biosensors. Talanta. 2008;74:831-83. http://dx.doi.org/10.1016/j.talanta.2007.07.013

[32]

Miao XM, Yuan R$^*$, Chai YQ, Shi YT, Yuan YY. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. Journal of Electroanalytical Chemistry. 2008;612:157-163

[33]

Cheng JJ, Di JW, Hong JH, Yao K, Sun Y, Zhuang J Y. Thepromotion effect of titania nanoparticles on the direct electrochemistryof lactate dehydrogenase sol-gel modified gold electrode. Talanta. 2008;76:1065-1069. http://dx.doi:10.1016/j.talanta.2008.05.006

[34]

Vamvakaki V, Chaniotakis NA. Pesticide detection with a liposome-based nano-biosensor. Biosensors and Bioelectronics. 2007;22:2848-2853. http://dx.doi.org/10.1016/j.bios.2006.11.024

[35]

Lu XB, Zhang HJ, Ni YW, Zhang Q, Chen JP. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosensors and Bioelectronics. 2008;24:93-98. http://dx.doi:10.1016/j.bios.2008.03.025

[36]

Cao X, Ning W, Li LD, Guo L. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sensors and Actuators B. 2008;129:268-273. http://dx.doi.org/10.1016/j.snb.2007.08.003

[37]

Elfström1 N and Linnros J. Sensitivity of silicon nanowires in biosensor applications. Journal of Physics: Conference Series. 2008;100:052042. http://dx.doi.org/10.1088/17426596/100/5/052042

[38]

Chen Y, Wang XH, Hong M, Erramilli S, Mohanty P. Surface-modified silicon nano-channel for urea sensing. Sensors and Actuators B. 2008;133:593-598. http://dx.doi:10.1016/j.snb.2008.03.033

[39]

Zhang ZL, Asano T, Uno H, Tero R,Suzui M, Nakao S. Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator. Thin Solid Films. 2008;516:2813-2815. http://dx.doi.org/10.1016/j.tsf.2007.04.104

[40]

Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YR. Electrochemical immunoassay for -1-fetoprotein based on CdS nanoparticles and Thionine bilayer films modified glass carbon electrode. Biochemical Engineering Journal. 2008;38:9-15. http://dx.doi.org/10.1016/j.bej.2007.05.015

[41]

Willner I. Nanobiotechnology. FEBS Journal. 2007;274:301. http://dx.doi.org/10.1111/j.1742-4658.2006.05601.x

[42]
Patolsky F, Timko BP, Zheng GF and Lieber CM. Nanowire - Based Nanoelectronic Devices in the Life Sciences. Mrs Blletin. 2007;32(2);142-149. http://dx.doi.org/10.1557mrs2007.47
[43]

Zhang FY, Ulrich B, Reddy RK, Venkatraman VL, Prasad S, VU TQ. MFabrication of Submicron IrO2 Nanowire Array Biosensor Platform by Conventional Complementary Metal-Oxide-Semiconductor Process. Japanese Journal of Applied Physics. 2008;47(2):1147-1151.

[44]

Heitzinger C, Kennell R, Klimeck G, Mauser N, McLennan M and Ringhofer C, Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB. Journal of Physics: Conference Series. 2008;107:012004. http://dx.doi.org/10.1088/1742-6596/107/1/012004

[45]

Abe M, Murata K, Ataka T,Matsumoto K. Calibration method for a carbon nanotube field-effecttransistor biosensor. Nanotechnology. 2008;19;045505.

[46]

Maki WC, Mishra NN, Cameron EG, Filanoski B, Rastogi SK, Maki GK. Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosensors and Bioelectronics.2008;23; 780-787. http://dx.doi.org/10.1016/j.bios.2007.08.017

[47]

Yoon SJ and Kim D.Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. Virtual Journal for Biomedical Optics.3(4).

[48]

Curulli A and Zane D. Gold and TiO2 Nanostructurated Surfaces for Assembling of Electrochemical Biosensors. Research Letters in Nanotechnology Volume. 2008;4:789153.

[49]

Wang D, Sun G, Xiang B, Chiou BS. Controllable biotinylated poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers to bind streptavidin-horseradish peroxidase (HRP) for potential biosensor applications. European polymer journal. 2008;44(7):2032.

[50]

Ghanbari KH, Bathaie SZ. Mousavi MF, Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosensors and Bioelectronics. 2008;23:1825-1831. http://dx.doi.org/10.1016/j.bios.2008.02.029

[51]

Dai ZH, Bai HY, Hong M, Zhu YY, Bao JC, Shen J. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosensors and Bioelectronics. 2008;23:1869-1873. http://dx.doi.org/10.1016/j.bios.2008.03.002

[52]

Bryant GW, Javier Garcı’a de Abajo F and Aizpurua J. Mapping the Plasmon Resonances of Metallic Nanoantennas. Nano Lett. 2008; 8(2):631-6. http://dx.doi.org/10.1021/nl073042v

[53]

Fu J, Park B, Siragusa G, Jones L, Tripp R,Zhao YP and Cho YJ. An Au/Si hetero-nanorod-based biosensor for Salmonella detection. Nanotechnology. 2008;19:155502.

[54]

Landry M and Winters-Hilt S. Analysis of nanopore detector measurements using Machine-Learning methods, with application to single-molecule kinetic analysis. BMC bioinformatics. 2007;8(7):12

[55]

Thomson K, Amin I, Eric M,Stephen WH. Preliminary nanopore cheminformatics analysisof aptamer-target binding strength. BMC bioinformatics. 2007;8(Suppl 7):S11. http://doi:10.1186/1471-2105-8-S7-S11

[56]

Mala Ekanayake EMI, Preethichandra DMG, Kaneto K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosensors and Bioelectronics. 2007;23:107-113. http://dx.doi.org/10.1016/j.bios.2007.03.022

[57]

Medintz IL, Teysuo Uyeda H, Goldman E and Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435-446. http://dx.doi:10.1038/nmat1390

[58]

Du D, Chen WJ, Cai J, Zhang J, Qu FG and Li HB. Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. Journal of Electroanalytical Chemistry. 2008;623(1):81-85.

[59]

Deng ZT, Zhang Y, Yue JC,Tang FQ and Wei Q. Green and Orange CdTe Quantum Dots as Effective pH-SensitiveFluorescent Probes for Dual Simultaneous and Independent Detectionof Viruses. Phys. Chem.B. 2007;111(41):12024-12031. http://dx.doi.org/10.1021/jp074609z

[60]

Seo S, Maria DK,Young RF, Kish LB,Cheng M. Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectronic Engineering. 2008;85:1484-1489. http://dx.doi.org/10.1016/j.mee.2007.12.046

[61]

Jun YW, Seo JW and Cheon J. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Accounts of chemical research. 2008:41(2):179-189.

[62]

Zhang HL, Lai GS, Han DY, Yu AM. An amperometric hydrogen peroxide biosensor based on immobilizationof horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem. 2008;390:971-977. http://dx.doi.org/10.1007/s00216-007-1748-3

[63]

Lai GS, Zhang HL, Han DY. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensors and Actuators B. 2008;129:497-503. http://dx.doi.org/10.1016/j.snb.2007.08.041

[64]
Mäkiranta J, Verho J, Lekkala J and Matintupa N. Novel measurement method for magnetic particles. Proceedings of the 28th Ieee Embs Annual International Conference.
[65]

Yang H, Chen L, Lei C, Zhang J, Li D, et al.Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18. Appl.Phys.Lett. 2010;97:043702. http://dx.doi.org/10.1063/1.3467833

[66]

Chen L, Bao CC, Yang H, Li D, Lei C,et al. A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells. Biosensors and Bioelectronics. 2011;26(7):3246-3253. http://dx.doi.org/10.1016/j.bios.2010.12.034

[67]

Thévenot DR, Toth K, Durst RA and Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics. 2001;16(1-2):121-131.

[68]

Sun W, Zhong JH, Qin P, Jiao K. Electrochemical biosensor for the detection of cauliflower mosaic virus 35 S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Analytical Biochemistry. 2008;377:115-119. http://dx.doi.org/10.1016/j.ab.2008.03.027

[69]

Zhang W, Yang T, Huang DM, Jiao K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chinese Chemical Letters. 2008;19:589-591. http://dx.doi.org/10.1016/j.cclet.2008.03.012

[70]

Ferapontova EE, Olsen EM, Gothelf KV. An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum. AM.CHEM.SOC. 2008;130:4256-4258. http://dx.doi.org/10.1021/ja711326b

[71]

Yang ML,Wang J,Li HQ,Zheng JQ,Wu NN. A lactate electrochemical biosensor with a titanate nanotubeas direct electron transfer promoter. Nanotechnology. 2008;19:075502. http://doi:10.1088/0957-4484/19/7/075502.

[72]

Chai R, Yuan R,Chai YQ, Ou CF, Cao SR, Xuelian Li. Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta. 2008;74:1330-1336. http://dx.doi.org/10.1016/j.talanta.2007.08.046

[73]

Maeng JH, Lee BC, Ko YJ, Cho W, Ahn Y, Cho NG. A novel microfluidic biosensor based on an electrical detection system for alpha-fetoprotein. Biosensors and Bioelectronics.2008;23:1319-1325. http://dx.doi.org/10.1016/j.bios.2007.11.019

[74]
Marchesini GR, Buijs, Haasnoot W, Hooijerink D, Jansson O, and Nielen MWF. Nanoscale affinity chip interface for coupling inhibition SPR immunosensor screening with Nano-LC TOF MS. Anal Chem. 2008;80:1159-1168. http://dx.doi.org/10.1021ac071564p
[75]

Lee HY, et al. Self-organized functional lipid vesicle array for sensitive immunoassay chip., Ultramicroscopy. 2008.

[76]

Chen SH, Yuan R, Chai YQ, Li N. A New Enzyme Immobilization Technique Based on Thionine-Bovine Serum Albumin Conjugate and Gold Colloidal Nanoparticles for ReagentlessAmperometric Biosensor Applications. Electroanalysis. 2008;20(4):418-425.

[77]

Cao T, Wang AF, Liang XM, Tang HY, Auner GW, Salley SO. Patterned Immobilization of Antibodies in Mechanically Induced Cracks. Phys.Chem.B. 2008;112:2727-2733. http://dx.doi.org/10.1021/jp711070k

[78]
Craig I, McLaughlin JA. SPR and AFM study of engineered biomolecule immobilisation techniques. Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, 2006.
[79]

Yuk JS, Jung JW, Kim YM and Ha KS. Analysis of protein arrays with a dual-function SPR biosensor composed of surface plasmon microscopy and SPR spectroscopy based on white light. Sensors and Actuators B:Chemical Volume. 2008;129(1):113-119. http://dx.doi.org/10.1016/j.snb.2007.07.089

[80]

Galopin E, Beaugeois M, Pinchemel B, Camart JC, Bouazaoui M, SPR VT. biosensing coupled to a digital microfluidic microstreaming system. Biosensors and Bioelectronics. 2007;23:746-750. http://dx.doi.org/10.1016/j.bios.2007.08.009

[81]

Shan XN, Foley KJ and Tao NJ. A label-free optical detection method for biosensors and microfluidics. Applied Physics Letters. 2008;92:133901.http://dx.doi.org/10.1063/1.2906486

[82]

Ansari SG, Ansari ZA, Wahab R, Kim YS, Khang G, Shin HS. Glucose sensor based on nano-baskets of tin oxide templated in porous alumina by plasma enhanced CVD.Biosensors and Bioelectronics. 2008;23:1838-1842. http://dx.doi.org/10.1016/j.bios.2008.02.022

[83]

Lu BW, Chen WC. A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials. 2006;304: e400-e402. http://dx.doi.org/10.1016/j.jmmm.2006.01.222

[84]

Li G, Wen HX, Wang HY, Wu Y and Parajuli R. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes. Meas.Sci. Technol. 2008;19:065203.

[85]

Manesh KM, Kim HT, Santhosh P, Gopalan AI, Lee KP. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosensors and Bioelectronics. 2008;23; 771-779. http://dx.doi.org/10.1016/j.bios.2007.08.016

[86]

Zou YJ, Xiang CL, Sun LX, Xu F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics. 2008;23:1010-1016. http://dx.doi.org/10.1016/j.bios.2007.10.009

[87]

Yu JJ, Yu DL, Zhao T, Zeng BZ. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix. Talanta. 2008;74:1586-1591. http://dx.doi.org/10.1016/j.talanta.2007.10.005

[88]

Liao KC, Thieo HE, Frances J R, Marcu L, William Clifton, Gerald EL. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. Biosensors and Bioelectronics. 2008;23: 1458-1465. http://dx.doi.org/10.1016/j.bios.2008.01.012

[89]

Kusakari A, Izumi M, Ohnuki H. Preparation of an enzymatic glucose sensor based on hybrid organic-inorganic Langmuir-Blodgett films: Adsorption of glucose oxidase into positively charged molecular layers. Colloids and Surfaces A: Physicochem. 2008;321: 47-51. http://dx.doi.org/10.1016/j.colsurfa.2008.02.032

[90]

Christopher JJ, Nikolay Z, Anthony EGC and Judit M Nagy. Proteomics, nanotechnology and molecular diagnostics.Proteomics. 2008; 8:715-730. http://dx.doi.org/10.1002/pmic.200700665

[91]

Shi H, Xia T, Nel AE, Yeh JI. Part Ⅱ: coordinated biosensors--development of enhanced nanobiosensors for biological and medical applications. Nanomed. 2007;2(5):599-614. http://dx.doi.org/10.2217/17435889.2.5.599

[92]

Yue M, Stachowiak JC, Lin H, Datar R, Cote R and MajumdaA. Label-Free Protein Recognition Two-Dimensional Array Using Nanomechanical Sensors. Nano Letter. 2008;8(2).

[93]

Galandova J, Ziyatdinova G and Labuda J. D ispos able Electrochemical Biosensor with Multiwalled Carbon Nanotubes-Chitosan Composite Layer for the Detection of Deep DNA Damage. Analytical Sciences. 2008;24.

[94]

Ghanbari KH, Bathaie SZ, Mousavi MF. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosensors and Bioelectronics.2008.

[95]

McKenzie F, Faulds K, Graham D. Sequence-specific DNA detection using high-affinity LNA-functionalized gold nanoparticles. Small. 2007;3(11)1866-1868. http://dx.doi.org/10.1002/smll.200700225

[96]

Ma Y, Jiao K, Yang T, Sun DX. Sensitive PAT gene sequence detection by nano-SiO2/p-aminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sensors and Actuators B. 2008;131:565-571. http://dx.doi.org/10.1016/j.snb.2007.12.046

[97]

Zhang W, Yang T, Huang DM, Jiao K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chinese Chemical Letters. 2008;19:589-591. http://dx.doi.org/10.1016/j.cclet.2008.03.012

[98]

Vamvakaki V, Chaniotakis NA. Pesticide detection with a liposome-based nano-biosensor. Biosensors and Bioelectronics. 2007;22:2848-2853. http://dx.doi.org/10.1016/j.bios.2006.11.024

[99]
Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor. Sensors and Actuators B. 2008;133;1-4. http://dx.doi.org/10.1016/j.snb.2008.01.055
[100]
Moldovan C, Iosub R, Radu C, Necula D, Ion M. Biosensor for pesticides detection in food.
[101]

Qiao YB, Jian FF, Bai Q. Bioconjugation of zirconium uridine monophosphate: lication to myoglobin direct electrochemistry. Biosensors and Bioelectronics. 2008;23:1244-1249. http://dx.doi.org/10.1016/j.bios.2007.11.008

[102]

Zhu HY, White IM, Suter JD, Zourob M, Xudong Fan. Opto-fluidic micro-ring resonator for sensitivelabel-free viral detection. Analyst. 2008;133: 356-360. http://dx.doi.org/10.1039/b716834a

[103]

Medley CD, Smith JE, Tang ZW, Wu YR, Bamrungsap S and Weihong Tan. Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells. Anal.Chem. 2008; 80: 1067-1072. http://dx.doi.org/10.1021/ac702037y

[104]

Prow TW, Bhutto I, Grebe R, Uno K, Merges C, Mcleod DS, Lutty GA. Nanoparticle-delivered biosensor for reactive oxygen species in diabetes. Vision Research. 2008;48: 478-485. http://dx.doi.org/10.1016/j.visres.2007.09.019

[105]

Li BL, Du Y, Wei H, Dong SJ. Reusable.label-free electrochemical aptasensor for sensitive detection of small molecules. Chem.Commun. 2007;3780-378228. http://dx.doi.org/10.1039/b707057h

[106]

Lee MR and Fauchet PM. Nanoscale microcavity sensor for single particle detection. Optics Letters. 2007;32(22). http://dx.doi.org/10.1364/OL.32.003284

Nano Biomedicine and Engineering
Pages 260-273
Cite this article:
Gui C, Dai X, Cui D. Advances of Nanotechnology Applied to Biosensors. Nano Biomedicine and Engineering, 2011, 3(4): 260-273. https://doi.org/10.5101/nbe.v3i4.p260-273

299

Views

9

Downloads

6

Crossref

0

Scopus

Altmetrics

Published: 31 December 2011
© 2011 C. Gui, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return