AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

2D Gold Nanoparticle Structures Engineered Through DNA Tiles for Delivery and Therapy

Ali Yasin SonayKemal KeseroğluMustafa Culha( )
Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
Show Author Information

Abstract

Self-assembly of 13 nm gold nanoparticles (AuNPs) engineered into 2D structures in solution using DNA tiles for their possible use for gene delivery and photothermal therapy is reported. The two different DNA tiles were constructed and the AuNPs coated with oligonucleotides possessing complementary sequence from the free ends were hybridized with the sticky ends of the tiles. The DNA tiles were bind to each other by mixing the tile structures without a heating and cooling step. The constructed nanostructures were 5 to 7 DNA tiles long since heat was not used to elongate them. When the DNA tiles were bound to the AuNPs, it was observed that AuNPs tend to stay in close proximity by filling the gaps between tiles. The stability of the constructed structures was tested against DNase, a DNA cleaving enzyme, for possible applications for gene delivery and photothermal therapy. It was found that the AuNP bound DNA tile structures resist the DNase cleavage up to eighty percent. Due to the presence of the AuNPs in the structure, the enzyme cannot bind to DNA sequences and this increases the DNA tile structures’ stability.

References

[1]

Dentinger PM, Krafcik KL, Simison KL, Janek RP, Hachman J. High aspect ratio patterning with a proximity ultraviolet source. Micro. Eng.2002; 61:621001-7.doi: 10.1016/s0167-9317(02)00491-4

[2]

Achenbach S. Deep sub micron high aspect ratio polymer structures produced by hard X-ray lithography. Micro. Tech. 2004; 10:493-97. doi: 10.1007/s00542-004-0379-2.

[3]

Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 2005; 105:1171-96. doi: 10.1021/cr030076o.

[4]

Binder WH. Supramolecular assembly of nanoparticles at liquid-liquid interfaces Angew. Chem. Int. Ed. Engl. 2005; 44:5172-75. doi: 10.1002/anie.200501220.

[5]

Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000; 404:746-48. doi: 10.1038/35008037.

[6]

Hamad-Schifferli K, Schwartz JJ, Santos AT, Zhang S, Jacobson JM. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 2002; 415:152-5. doi: 10.1038/415152a.

[7]

Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, et al. Building Programmable Jigsaw Puzzles with RNA. Science 2004; 306:2068-72. doi: 10.1126/science.1104686

[8]

Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles Proc. Nat. Aca. Sci. 2002; 99:5355-60. doi: 10.1073/pnas.072089599.

[9]

Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382:607-9. doi: 10.1038/382607a0

[10]

Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, et al. Organization of “nanocrystal molecules” using DNA. Nature 1996; 382: 609-11. doi: 10.1038/382609a0.

[11]

Mao C, Sun W, Seeman NC. Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. J. Am. Chem. Soc. 1999; 121:5437-43. doi: 10.1021/ja9900398.

[12]

Reishus D, Shaw B, Brun Y, Chelyapov N, Adleman L. Self-Assembly of DNA Double-Double Crossover Complexes into High-Density, Doubly Connected, Planar Structures. J. Am. Chem. Soc. 2005; 127:17590-91. doi: 10.1021/ja0557177.

[13]

LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, et al. Construction, Analysis, Ligation, and Self-Assembly of DNA Triple Crossover Complexes. J. Am. Chem. Soc. 2000; 122:1848-60. doi: 10.1021/ja993393e.

[14]

Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998; 394:539-44.doi: 10.1038/28998.

[15]

Liu D, Wang M, Deng Z, Walulu R, Mao C. Tensegrity: Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions. J. Am. Chem. Soc. 2004; 126: 2324-25. doi: 10.1021/ja031754r.

[16]

Sha R, Liu F, Millar DP, Seeman NC. Atomic force microscopy of parallel DNA branched junction arrays. Chem.& Bio. 2000; 7:743-51. doi: 10.1016/S1074-5521(00)00024-7.

[17]

Ding B, Sha R, Seeman NC. Pseudohexagonal 2D DNA Crystals from Double Crossover Cohesion. J. Am. Chem. Soc. 2004; 126: 10230-31. doi: 10.1021/ja047486u.

[18]

Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature 2006; 440:297-302. doi: 10.1038/nature04586.

[19]

Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 2003; 301:1882-84.doi: 10.1126/science.1089389.

[20]

Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009; 459: 73-76. doi: 10.1038/nature07971.

[21]

Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 2009; 323:112-16. doi: 10.1126/science.1165831.

[22]

Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Kortum RR. Real-Time Vital Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles. Cancer Res. 2003; 63:1999-2004

[23]

Link S, El-Sayed MA. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 1999; 103:8410-26. doi: 10.1021/jp9917648

[24]

Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Letters. 2003; 3: 1087-90. doi: 10.1021/nl034197f

[25]

Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A Molecular Ruler Based on Plasmon Coupling of Single Gold and Silver Nanoparticles. Nature Biotechnology. 2005; 23:741-45. doi: 10.1038/nbt1100.

[26]

Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL. Nanoshell-mediated Near-infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance PNAS. 2003; 100:13549-54.doi:10.1073/pnas.2232479100.

[27]

Cheng W, Campolongo MJ, Cha JJ, Tan SJ, Umbach CC, Muller DA, et al. Free-standing nanoparticle superlattice sheets controlled by DNA.Nat. Mater. 2009; 8:519-25. doi: 10.1038/nmat2440.

[28]

Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA. DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface. Nano Lett. 2004; 4:2343-47. doi: 10.1021/nl048635+.

[29]
Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC. Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs Nano Lett. 2006; 6: 1502-04. doi: 10.1021/nl060994c.
[30]

Sharma J, Chhabra R, Liu Y, Ke Y, Yan H. DNA-Templated Self-Assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays Angew. Chem. Int. Ed. 2006; 45:730-35. doi: 10.1002/anie.200503208.

[31]

Zhang J, Liu Y, Ke Y, Yan H. Periodic Square-Like Gold Nanoparticle Arrays Templated by Self-Assembled 2D DNA Nanogrids on a Surface. Nano Lett. 2006; 6:248-51. doi: 10.1021/nl052210l.

[32]

Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA. DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface. Nano Lett. 2004; 4:2343-47. doi: 10.1021/nl048635+.

[33]

Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y. Toward Reliable Gold Nanoparticle Patterning On Self-Assembled DNA Nanoscaffold. J. Am.. Chem. Soc. 2008; 130:7820-21. doi: 10.1021/ja802853r.

[34]

Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982; 86:3391-95. doi: 10.1021/j100214a025.

[35]

Mandelkern M, Elias JG, Eden D, Crothers DM. The dimensions of DNA in solution J. Mol. Bio. 1981; 152:153-161. doi: 10.1016/0022-2836(81)90099-1.

[36]

Chhabra R, Sharma J, Liu Y, Rinker S, Yan H. DNA Self-assembly for Nanomedicine Adv. Drug Del. Rev. 2010; 62:617-25. doi: 10.1016/j.addr.2010.03.005.

[37]

Hao E, Schatz G. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004; 120:357–66. doi: 10.1063/1.1629280

[38]

Kim D, Jeong YY, Jon S. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano. 2010; 4:3689-96. doi: 10.1021/nn901877h

[39]

Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006; 312:1027-30. doi: 10.1126/science.1125559.

Nano Biomedicine and Engineering
Pages 17-22
Cite this article:
Sonay AY, Keseroğlu K, Culha M. 2D Gold Nanoparticle Structures Engineered Through DNA Tiles for Delivery and Therapy. Nano Biomedicine and Engineering, 2012, 4(1): 17-22. https://doi.org/10.5101/nbe.v4i1.p17-22

385

Views

5

Downloads

4

Crossref

7

Scopus

Altmetrics

Published: 31 March 2012
© 2012 AY, Sonay, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return