AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Nanostructured Calcium Phosphates: Preparation and Their Application in Biomedicine

Feng Chena,bYingjie Zhub( )Jin WubPeng HuangaDaxiang Cuia( )
Department of Bio-Nano Science and Engineering, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
Show Author Information

Abstract

Due to the similar chemical properties to the inorganic component in calcified tissues, synthetic calcium phosphate has been considered as ideal biomaterials with excellent biocompatibility. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Recently, the synthesis and application of nanostructured calcium phosphate materials have become a very hot field. Lots of methods have been reported to prepare nanostructured calcium phosphate, and various morphologies including nanoparticles, plate-like nanocrystals, nano-needles, whiskers/fibres/wires, mesoporous, nanotubes, nano-blades, and powders with three-dimensional (3-D) structures have been obtained. More studies of nanostructured calcium phosphates are expected in biomedical area, such as tissue engineering scaffolds, drug/gene delivery systems and multifunctional systems. In this article, the synthesis and application of nanostructured calcium phosphates are reviewed and discussed.

References

[1]

Gassmann T. The preparation of a complex salt corresponding to apatite-typus and its relations to the constitution of bones. H-S Z Physiol Chem 1913; 83: 403-8.

[2]

Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004; 14: 2115-23.http://dx.doi.org/10.1039/b402005g

[3]

Tzaphlidou M. Bone Architecture Collagen Structure and Calcium/Phosphorus Maps. J Biol Phys. 2008; 34: 39-49.http://dx.doi.org/10.1007/s10867-008-9115-y

[4]

Hoffler CE, Guo XE, Zysset PK, Goldstein SA. An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng-T Asme 2005; 127: 1046-53. http://dx.doi.org/10.1115/1.2073671

[5]

Bembey AK, Bushby AJ, Boyde A, Ferguson VL, Oyen ML. Hydration effects on the micro-mechanical properties of bone. J Mater Res.2006; 21:1962-8.http://dx.doi.org/10.1557/jmr.2006.0237

[6]

Weiner S, Wagner HD. The material bone Structure mechanical function relations. Annu Rev Mater Sci. 1998; 28:271-98. http://dx.doi.org/10.1146/annurev.matsci.28.1.271

[7]

Weiner S, Traub W, Wagner HD. Lamellar bone structure-function relations. J Struct Biol. 1999, 126, 241-55.http://dx.doi.org/10.1006/jsbi.1999.4107

[8]

Rubin MA, Jasiuk L, Taylor J, Rubin J, Ganey T, Apkarian RP. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone. 2003; 33: 270-282.http://dx.doi.org/10.1016/S8756-3282(03)00194-7

[9]

Pasteris JD, Wopenka B, Valsami-Jones E. Bone and tooth mineralization Why apatite? Elements. 2008; 4: 97-104. http://dx.doi.org/10.2113/GSELEMENTS.4.2.97

[10]

Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010; 6: 715-34. http://dx.doi.org/10.1016/j.actbio.2009.10.031

[11]

Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465-85.http://dx.doi.org/10.1016/j.biomaterials.2009.11.050

[12]

Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009; 44: 2343-87.http://dx.doi.org/10.1007/s10853-008-3124-x

[13]

Ong JL, Chan DCN. Hydroxyapatite and their use as coatings in dental implants A review. Crit Rev Biomed Eng. 2000; 28: 667a-707a.

[14]

Cai YR, Tang RK. Calcium phosphate nanoparticles in bio-mineralization and biomaterials. J Mater Chem. 2008; 18: 3775-87. http://dx.doi.org/10.1039/b805407j

[15]

Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 ℃ in synthetic body fluids. Biomaterials. 2000; 21:1429-38. http://dx.doi.org/10.1016/S0142-9612(00)00019-3

[16]

Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution. J Solid State Chem. 2004; 177: 793-9.http://dx.doi.org/10.1016/j.jssc.2003.09.012

[17]

Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials. 2002; 23:699-710.http://dx.doi.org/10.1016/S0142-9612(01)00158-2

[18]

Gu SY, Zhan H, Ren J, Zhou XY. Sol-gel synthesis and characterisation of nano-sized hydroxyapatite powders and hydroxyapatite/poly(D, L-lactide-co-glycolide) composite scaffolds. Polym Polym Compos. 2007; 15:137-44.

[19]

Jadalannagari S, More S, Kowshik M, Ramanan SR. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Mat Sci Eng C-Mater. 2011; 31:1534-8.http://dx.doi.org/10.1016/j.msec.2011.07.001

[20]

Lee JG, Hong SM, Park JJ, Lee MK, Hong SJ, Joo UH, Rhee CK. High energy ball-mill behavior of titania plus hydroxyapatite composite nano-powders. Mater Charact. 2010; 61:1290-3.http://dx.doi.org/10.1016/j.matchar.2010.08.004

[21]

Niu JL. Hydrothermal synthesis of nano-crystalline hydroxyapatite. Bioceramics. 2007; 19:330-332, 247-50.

[22]

Stupp SI, Ciegler GW. Organoapatites materials for artificial bone. I. Synthesis and microstructure. J Biomed Mater Res. 1992; 26:169-83.http://dx.doi.org/10.1002/jbm.820260204

[23]

Poinern GE, Brundavanam RK, Mondinos N, Jiang ZT. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason Sonochem. 2009; 16: 469-74.http://dx.doi.org/10.1016/j.ultsonch.2009.01.007

[24]

LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993; 14:65-88.http://dx.doi.org/10.1016/0267-6605(93)90049-D

[25]

Chan CK, Kumar TSS, Liao S, Murugan R, Ngiam M, Ramakrishman S. Biomimetic nanocomposites for bone graft applications. Nanomedicine-Uk. 2006; 1: 177-88.http://dx.doi.org/10.2217/17435889.1.2.177

[26]

Mikolajczyk T, Rabiej S, Bogun M. Analysis of the structural parameters of polyacrylonitrile fibers containing nanohydroxyapatite. J Appl Polym Sci. 2006; 101:760-5.http://dx.doi.org/10.1002/app.23978

[27]

Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mat Sci Eng C-Bio S. 2007; 27: 441-9.http://dx.doi.org/10.1016/j.msec.2006.05.018

[28]

Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011: 7:2769-81.http://dx.doi.org/10.1016/j.actbio.2011.03.019

[29]

Zhang CM, Yang J, Quan ZW, Yang PP, Li CX, Hou ZY, Lin J. Hydroxyapatite Nano- and Microcrystals with Multiform Morphologies Controllable Synthesis and Luminescence Properties. Cryst Growth Des. 2009; 9:2725-33.http://dx.doi.org/10.1021/cg801353n

[30]

Lai C, Tang SQ, Wang YJ, Wei K. Formation of calcium phosphate nanoparticles in reverse microemulsions. Mater Lett. 2005; 59:210-4.http://dx.doi.org/10.1016/j.matlet.2004.08.037

[31]

Jevtic M, Mitric M, Skapin S, Jancar B, Ignjatovic N, Uskokovic D. Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst Growth Des. 2008; 8:2217-22.http://dx.doi.org/10.1021/cg7007304

[32]

Zhang HB, Zhou KC, Li ZY, Huang SP. Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids 2009, 70, 243-8.http://dx.doi.org/10.1016/j.jpcs.2008.10.011

[33]

Ito H, Oaki Y, Imai H. Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase. Cryst Growth Des. 2008; 8:1055-9.http://dx.doi.org/10.1021/cg070443f

[34]

Lin KL, Chang J, Liu XG, Chen L, Zhou YL. Synthesis of element-substituted hydroxyapatite with controllable morphology and chemical composition using calcium silicate as precursor. Cryst Eng Comm. 2011; 13:4850-55.http://dx.doi.org/10.1039/c0ce00835d

[35]

Shum HC, Bandyopadhyay A, Bose S, Weitz DA. Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem Mater. 2009; 21:5548-55.http://dx.doi.org/10.1021/cm9028935

[36]

Yoshimura M, Suda H, Okamoto K, Ioku K. Hydrothermal synthesis of biocompatible whiskers. J Mater Sci. 1994; 29: 3399-402. http://dx.doi.org/10.1007/BF00352039

[37]

Chen F, Zhu YJ, Wang KW, Zhao KL. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. Cryst Eng Comm 2011; 13:1858-63. http://dx.doi.org/10.1039/c0ce00574f

[38]

Zhan JH, Tseng YH, Chan JCC, Mou CY. Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Adv Funct Mater 2005; 15:2005-10.http://dx.doi.org/10.1002/adfm.200500274

[39]

Wei K, Wang YJ, Lai C, Ning CY, Wu DX, Wu G, Zhao NR, Chen XF, Ye RS. Synthesis and characterization of hydroxyapatite nanobelts and nanoparticles. Mater Lett. 2005; 59: 220-5. http://dx.doi.org/10.1016/j.matlet.2004.08.034

[40]

Lin KL, Chang J, Zhu YJ, Wu W, Cheng GF, Zeng Y, Ruan ML. A facile one-step surfactant-free and low-temperature hydrothermal method to prepare uniform 3D structured carbonated apatite flowers. Cryst Growth Des. 2009; 9:177-81.http://dx.doi.org/10.1021/cg800129u

[41]

Ma MG, Zhu YJ, Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite. J Phys Chem B. 2006; 110:14226-30.http://dx.doi.org/10.1021/jp061738r

[42]

He QJ, Huang ZL, Liu Y, Chen W, Xu T. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres. Mater Lett. 2007; 61:141-3.http://dx.doi.org/10.1016/j.matlet.2006.04.082

[43]

Mochales C, El Briak-BenAbdeslam H, Ginebra MP, Terol A, Planell JA, Boudeville P. Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO influence of instrumental parameters on the reaction kinetics. Biomaterials. 2004: 25:1151-8. http://dx.doi.org/10.1016/j.biomaterials.2003.08.002

[44]

Rivera EM, Araiza M, Brostow W, Castano VM, Diaz-Estrada JR, Hernandez, R.; Rodriguez, J. R. Synthesis of hydroxyapatite from eggshells. Mater Lett. 1999; 41:128-134.http://dx.doi.org/10.1016/S0167-577X(99)00118-4

[45]

Pang YX, Bao X. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc. 2003; 23:1697-704.http://dx.doi.org/10.1016/S0955-2219(02)00413-2

[46]

Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater. 1998; 10:49-53.http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:1<49::AID-ADMA49>3.0.CO;2-R

[47]

Boanini E, Fini M, Gazzano M, Bigi A. Hydroxyapatite nanocrystals modified with acidic amino acids. Eur J Inorg Chem. 2006; 4821-6. http://dx.doi.org/10.1002/ejic.200600423

[48]

Zhang J, Gao X, Song BC, Wang ZF, Lu WW. A novel technique to synthesize hydroxyapatite whiskers. Mater Lett. 2008; 62:1162-4. http://dx.doi.org/10.1016/j.matlet.2007.07.067

[49]

Wang KW, Zhou LZ, Sun Y, Wu GJ, Gu HC, Duan YR, Chen F, Zhu YJ. Calcium phosphate/PLGA-mPEG hybrid porous nanospheres A promising vector with ultrahigh gene loading and transfection efficiency. J Mater Chem. 2010; 20:1161-6. http://dx.doi.org/10.1039/b917441a

[50]

Wang KW, Zhu YJ, Chen F, Cao SW. Calcium phosphate/block copolymer hybrid porous nanospheres Preparation and application in drug delivery. Mater Lett. 2010; 64:2299-301.http://dx.doi.org/10.1016/j.matlet.2010.07.060

[51]

Tang QL, Zhu YJ, Duan YR, Wang Q, Wang KW, Cao SW, Chen F, Wu J. Porous nanocomposites of PEG-PLA/calcium phosphate room-temperature synthesis and its application in drug delivery. Dalton T. 2010; 39:4435-9.http://dx.doi.org/10.1039/b925779a

[52]

Wu GJ, Zhou LZ, Wang KW, Chen F, Sun Y, Duan YR, Zhu YJ, Gu HC. Hydroxylapatite nanorods An efficient and promising carrier for gene transfection. J Colloid Interf Sci. 2010; 345: 427-32. http://dx.doi.org/10.1016/j.jcis.2010.01.048

[53]

Ma MY, Zhu YJ, Li L, Cao SW. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate preparation and application in drug delivery. J Mater Chem 2008; 18:2722-27.http://dx.doi.org/10.1039/b800389k

[54]

Bigi A, Boanini E, Walsh D, Mann S. Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization. Angew Chem Int Edit 2002, 41, 2163-6. http://dx.doi.org/10.1002/1521-3773(20020617)41:12<2163::AID-ANIE2163>3.0.CO;2-G

[55]

Wang YS, Hassan MS, Gunawan P, Lau R, Wang X, Xu R. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure. J Colloid Interf Sci 2009; 339: 69-77.http://dx.doi.org/10.1016/j.jcis.2009.07.023

[56]

Schmidt HT, Ostafin AE. Liposome directed growth of calcium phosphate nanoshells. Adv Mater 2002; 14:532-5.http://dx.doi.org/10.1002/1521-4095(20020404)14:7<532::AIDADMA532>3.0.CO;2-4

[57]

Tjandra W, Ravi P, Yao J, Tam KC. Synthesis of hollow spherical calcium phosphate nanoparticles using polymeric nanotemplates. Nanotechnology. 2006; 17:5988-94.http://dx.doi.org/10.1088/0957-4484/17/24/014

[58]

Lin KL, Liu XG, Chang J, Zhu YJ. Facile synthesis of hydroxy-apatite nanoparticles, nanowires and hollow nanostructured microspheres using similar structured hard-precursors. Nanoscale 2011; 3: 3052-5.http://dx.doi.org/10.1039/c1nr10334b

[59]

Liu JB, Li KW, Wang H, Zhu MK, Yan H. Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem Phys Lett 2004; 396:429-32.http://dx.doi.org/10.1016/j.cplett.2004.08.094

[60]

Cheng XK, Huang ZL, Li JQ, Liu Y, Chen CL, Chi RA, Hu YH. Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere. Cryst Growth Des 2010; 10: 1180-8.http://dx.doi.org/10.1021/cg901088c

[61]

Ma MG, Zhu YJ, Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite. J Phys Chem B. 2006; 110:14226-30.http://dx.doi.org/10.1021/jp061738r

[62]

Wang KW, Zhu YJ, Chen XY, Zhai WY, Wang Q, Chen F, Chang JA, Duan YR. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres facile preparation and application in anticancer drug cellular delivery. Chem-Asian J. 2010; 5: 2477-82. http://dx.doi.org/10.1002/asia.201000463

[63]

Peytcheva A, Colfen H, Schnablegger H, Antonietti M. Calcium phosphate colloids with hierarchical structure controlled by polyaspartates. Colloid Polym Sci. 2002; 280:218-27.http://dx.doi.org/10.1007/s00396-001-0600-0

[64]

Wang LJ, Guan XY, Yin HY, Moradian-Oldak J, Nancollas GH. Mimicking the self-organized microstructure of tooth enamel. J Phys Chem C. 2008; 112:5892-9.http://dx.doi.org/10.1021/jp077105+

[65]

Kumar R, Prakash KH, Cheang P, Gower L, Khor KA. Chitosan-mediated crystallization and assembly of hydroxyapatite nano-particles into hybrid nanostructured films. J R Soc Interface. 2008; 5: 427-39.http://dx.doi.org/10.1098/rsif.2007.1141

[66]

Furuichi K, Oaki Y, Imai H. Preparation of nanotextured and nanoribrous hydroxyapatite through dicalcium phosphate with gelatin. Chem Mater. 2006; 18:229-34.http://dx.doi.org/10.1021/cm052213z

[67]

Zhang JL, Jiang DL, Zhang JX, Lin QL, Huang ZR. Synthesis of dental enamel-like hydroxyapaptite through solution mediated solidstate conversion. Langmuir. 2010; 26:2989-94.http://dx.doi.org/10.1021/la9043649

[68]

Yao X, Yao HW, Li GY, Li YT. Biomimetic synthesis of needle-like nano-hydroxyapatite templated by double-hydrophilic block copolymer. J Mater Sci. 2010; 45:1930-36.http://dx.doi.org/10.1007/s10853-009-4182-4

[69]

Zhang YZ, Reddy VJ, Wong SY, Li X, Su B, Ramakrishna S, Lim CT. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Eng Pt A. 2010; 16:1949-60.http://dx.doi.org/10.1089/ten.tea.2009.0221

[70]

Habibovic P, Bassett DC, Doillon CJ, Gerard C, Mckee MD, Barralet JE. Collagen biomineralization in vivo by sustained release of inorganic phosphate ions. Adv Mater. 2010; 22:1858-62.http://dx.doi.org/10.1002/adma.200902778

[71]

Jayasuriya AC, Kibbe S. Rapid biomineralization of chitosan microparticles to apply in bone regeneration. J Mater Sci-Mater M 2010; 21:393-8.http://dx.doi.org/10.1007/s10856-009-3874-2

[72]

Sailaja GS, Sreenivasan K, Yokogawa Y, Kumary TV, Varma HK. Bioinspired mineralization and cell adhesion on surface functionalized poly(vinyl alcohol) films. Acta Biomater. 2009; 5: 1647-55.http://dx.doi.org/10.1016/j.actbio.2008.12.005

[73]

Jongpoiboonkit L, Franklin-Ford T, Murphy WL. Mineral-coated polymer microspheres for controlled protein binding and release. Adv Mater. 2009; 21:1960-3.http://dx.doi.org/10.1002/adma.200801808

[74]

Lin KL, Zhou YL, Zhou Y, Qu HY, Chen F, Zhu YJ, Chang J. Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements Surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J Mater Chem. 2011; 21: 16558-65.http://dx.doi.org/10.1039/c1jm12514a

[75]

Liao S, Li BJ, Ma ZW, Wei H, Chan C, Ramakrishna S. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater. 2006; 1:45-53.http://dx.doi.org/10.1088/1748-6041/1/3/R01

[76]

Dai XS, Shivkumar S. Electrospinning of hydroxyapatite fibrous mats. Mater Lett. 2007; 61:2735-8.http://dx.doi.org/10.1016/j.matlet.2006.07.195

[77]

Dai XS, Shivkumar S. Electrospinning of PVA-calcium phosphate sol precursors for the production of fibrous hydroxyapatite. J Am Ceram Soc. 2007; 90:1412-9.http://dx.doi.org/10.1111/j.1551-2916.2007.01569.x

[78]

Chen F, Tang QL, Zhu YJ, Wang KW, Zhang ML, Zhai WY, Chang JA. Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics Electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater. 2010; 6:3013-20.http://dx.doi.org/10.1016/j.actbio.2010.02.015

[79]

Ma Z, Chen F, Zhu YJ, Cui T, Liu XY. Amorphous calcium phosphate/poly(D, L - lactic acid) composite nanofibers Electrospinning preparation and biomineralization. J Colloid Interf Sci 2011; 359:371-9.http://dx.doi.org/10.1016/j.jcis.2011.04.023

[80]

Stupp SI, Braun PV. Molecular manipulation of microstructures Biomaterials, ceramics, and semiconductors. Science. 1997; 277: 1242-8.http://dx.doi.org/10.1126/science.277.5330.1242

[81]

Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A. Microwave-processed nanocrystalline hydroxyapatite Simultaneous enhancement of mechanical and biological properties. Acta Biomater 2010; 6:3782-90. http://dx.doi.org/10.1016/j.actbio.2010.03.016

[82]

Lin KL, Chang JA, Lu JX, Wu W, Zeng Y. Properties of beta-Ca3(PO4)2 bioceramics prepared using nano-size powders. Ceram Int 2007; 33:979-85.http://dx.doi.org/10.1016/j.ceramint.2006.02.011

[83]

Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003; 15:3221-6. http://dx.doi.org/10.1021/cm030080g

[84]

Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mat Sci Eng R 2007; 57:1-27.http://dx.doi.org/10.1016/j.mser.2007.04.001

[85]

Jie W, Li Y. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polym J.2004; 40:509-15. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.028

[86]

Uskokovic V, Uskokovic DP. Nanosized hydroxyapatite and other calcium phosphates Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B 2011; 96:152-91. http://dx.doi.org/10.1002/jbm.b.31746

[87]

Cai YR, Pan HH, Xu XR, Hu QH, Li L, Tang RK. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres A smart and biocompatible drug release system. Chem Mater 2007; 19:3081-3.http://dx.doi.org/10.1021/cm070298t

[88]

Lam AMI, Cullis PR. Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. Bba-Biomembranes 2000; 1463:279-90. http://dx.doi.org/10.1016/S0005-2736(99)00219-9

[89]

Maitra A. Calcium phosphate nanoparticles second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005; 5:893-905.http://dx.doi.org/10.1586/14737159.5.6.893

[90]

Orrantia E, Chang PL. Intracellular-Distribution of DNA Internalized through Calcium-Phosphate Precipitation. Exp Cell Res 1990; 190:170-4.http://dx.doi.org/10.1016/0014-4827(90)90181-9

[91]

Shi DL. Integrated multifunctional nanosystems for medical diagnosis and treatment. Adv Funct Mater. 2009; 19:3356-73. http://dx.doi.org/10.1002/adfm.200901539

[92]

Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 2009; 19:1553-66.http://dx.doi.org/10.1002/adfm.200801655

[93]

Al-Kattan A, Dufour P, Dexpert-Ghys J, Drouet C. Preparation and physicochemical characteristics of luminescent apatite-based colloids. J Phys Chem C 2010, 114, 2918-24.http://dx.doi.org/10.1021/jp910923g

[94]

Zhang CM, Li CX, Huang SS, Hou ZY, Cheng ZY, Yang PP, Peng C, Lin J. Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials. 2010; 31: 3374-83.http://dx.doi.org/10.1016/j.biomaterials.2010.01.044

[95]

Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials. 2008; 29:4341-7.http://dx.doi.org/10.1016/j.biomaterials.2008.07.042

[96]

Ashokan A, Menon D, Nair S, Koyakutty M. A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials. 2010; 31:2606-16.http://dx.doi.org/10.1016/j.biomaterials.2009.11.113

[97]

Epple M, Neumeier M, Hails LA, Davis SA, Mann S. Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. J Mater Chem. 2011; 21:1250-4.http://dx.doi.org/10.1039/c0jm02264k

[98]

Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 2011; 32:9031-9.http://dx.doi.org/10.1016/j.biomaterials.2011.08.032

[99]

Chen F, Zhu YJ, Zhang KH, Wu J, Wang KW, Tang QL, Mo XM. Europium-doped amorphous calcium phosphate porous nanospheres preparation and application as luminescent drug carriers. Nanoscale Res Lett. 2010; 6:No. 67.

[100]

Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan T T, Altinoglu EI, Tabakovic A, Parette MR, Rouse SM, Ruiz-Velasco V, Adair JH. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008; 8: 4116-21.http://dx.doi.org/10.1021/nl802098g

[101]

Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 2008; 8:4108-15. http://dx.doi.org/10.1021/nl8019888

[102]

Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for In Vivo imaging of human breast cancer. Acs Nano. 2008; 2:2075-84.http://dx.doi.org/10.1021/nn800448r

Nano Biomedicine and Engineering
Pages 41-49
Cite this article:
Chen F, Zhu Y, Wu J, et al. Nanostructured Calcium Phosphates: Preparation and Their Application in Biomedicine. Nano Biomedicine and Engineering, 2012, 4(1): 41-49. https://doi.org/10.5101/nbe.v4i1.p41-49

342

Views

8

Downloads

29

Crossref

40

Scopus

Altmetrics

Published: 31 March 2012
© 2012 F. Chen, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return