AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (949.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
New Views | Open Access

Molecular Nanobiotechnological approaches for the detection and therapy of prion related diseases

PK Praseetha1( )Anand S Thampy1P Venugopalan1Murthy S Chavali1
Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari District, Tamil Nadu, India
Show Author Information

Abstract

Prion diseases are associated with the accumulation in the brain of an abnormal, protease resistant isoform of a host encoded glycoprotein known as prion protein (PrP). Nanotechnology in combination with biotechniques promises a broad spectrum of highly innovative approaches for overcoming the challenges posed by the prions. Recent advances in molecular nanobiotechnology have brought in the potential of molecular targeting in diagnosis and therapies of various diseases. Their high binding sensitivity and specificity added by their small size have favored the identification by in vitro protocols. Molecular targeting has initiated exciting technologies based on conjugation of biomolecules to nanoparticles. This review article is an extensive study of various research oriented nanobiotechnological protocols for rapid identification and cure for prion diseases both at in vivo and in vitro options.

References

1

Prusiner SB, Scott MR, DeArmond SJ, and Cohen FE. Prion protein biology. Cell. 1998; 93:337-348.http://dx.doi.org/10.1016/S0092-8674(00)81163-0

2

Prusiner SB. Novel proteinaceous infectious particles cause scapie. Science 1982; 216:136-144.http://dx.doi.org/10.1126/science.6801762

3

Safar J. Eight prion strains have PrPsc molecules with different conformations. Nature. Med. 1998; 4:1157-1165.http://dx.doi.org/10.1038/2654

4

Moreno CR, Lantier I, Sarradin P, and Elsen J M.. Detection of new quantitative trait loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics. 2003; 165:2085-2091.

5

Prusiner SB. Genetic and Infectious prion diseases. Arch. Neurol. 1993; 50(11): 1129-53. http://dx.doi.org/10.1001/archneur.1993.00540110011002

6

Rudi Glockshuber, Simone Hornemann, Martin Billeter1, Roland Riek, Gerhard Wider, Kurt Wuëthrich. Prion protein structural features indicate possible relations to signal peptidases. FEBS Letters 1998; 426: 291-296 http://dx.doi.org/10.1016/S0014-5793(98)00372-X

7

Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE. A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985; 40: 735-746. http://dx.doi.org/10.1016/0092-8674(85)90333-2

8

Caughey B, Kocisko DA, Raymond GJ, Lansbury PT Jr. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol.1995; 2:807-817.http://dx.doi.org/10.1016/1074-5521(95)90087-X

9

Prusiner SB. Molecular biology of prion diseases. Science. 1991; 252:1515-1522.http://dx.doi.org/10.1126/science.1675487

10

Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE. Coversion of alpha –helices into beta sheets features in the formation of the scrapie prion proteins.1993; 90(23):10962-6.

11

Thurmond RL, Wadsworth SA, Schafer PH, Zivin RA, Siekierka JJ. Kinetics of small molecule inhibitor binding to p38 kinase. Eur. J. Biochem. 2001; 268:5747-5754.http://dx.doi.org/10.1046/j.0014-2956.2001.02512.x

12

Cervenakova L, Brown P. 2004. Advances in screening test development for transmissible spongiform encephalopathies. Expert Rev. Anti Infect Ther. 2: 873-880 http://dx.doi.org/10.1586/14789072.2.6.873

13

Thuring CM, Erkens JH, Jacobs JG, Bossers A, Van Keulen LJ, Garssen GJ, Van Zijderveld FG, Ryder SJ, Groschup MH, Sweeny T, and Langeveld JP. 2004. Discrimination between scrapie and bovine spongiform encephalopathy in sheep by molecular size, immunoreactivity, and glycoprofile of prion protein. J Clin Microbiol 2004; 42: 972-80.http://dx.doi.org/10.1128/JCM.42.3.972-980.2004

14

Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E. High density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 2001; (6): 429-440. http://dx.doi.org/10.1177/108705710100600609

15

Hajduk PJ, Betz SF, Mack J, Ruan X, Towne DL, Lerner CG. A strategy for high throughput assay development using leads derived from nuclear magnetic resonance based screening. J. Biomol. Screen. 2002; 7: 429-432.http://dx.doi.org/10.1177/108705702237674

16

Annis DA, Athanasopoulos J, Curran PJ, Felsch JS, Kalghatgi K, Lee WH, An affinity selection mass spectrometry method for the identification of small molecule ligands from self-encoded combinatorial libraries. Int. J. Mass. Spec. 2004; 238: 77-83.

17

Melkko S, Zhang Y, Dumelin CE, Scheuermann J, Neri D. Isolation of high affinity trypsin inhibitors from a DNA encoded chemical library. Angew Chem. Int. Ed. Eng. 2007; 46: 4671-4674. http://dx.doi.org/10.1002/anie.200700654

18

Jijun Dong, Carlos E Castro, Mary C Boyce, Matthew J Lang & Susan Lindquist. Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nature Structural & Molecular biology 2010; 17(12):1423-1430 http://dx.doi.org/10.1038/nsmb.1954

19

Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R and Wuthrich K NMR structure of the mouse prion protein domain PrP (121–231). Nature 1996; 382:180–182.http://dx.doi.org/10.1038/382180a0

20
Hammond D, Lathrop J, Cervenakova L, Carbonell R (inventors): Prion protein ligands and methods of use. US patent WO 2004/050851A2; 3: 2003
21

Alana M. Thackray, Jean-Yves Madec., Edmond wong, Robert Morgan-Warren, David R. Brown, Thierry Baron and Raymond Bujdoso. Detection of bovine spongiform encephalopathy, ovine scrapie prion-related protein (PrPSc) and normal PrPc by monoclonal antibodies raised to copper-refolded prion protein Biochem. J. 2003; 370:81-90

22

Lambert MP, Barlow AK, Chromy, BA. Diffusible, nonfibrillar ligands derived from Ab1->42 are potent central nervous system neurotoxins. Proc Natl Acad Sci. 1998; 95: 6448-53.

23

Bendheim PE, Barry RA, DeArmond SJ, Stites DP & Prusiner SB. Antibodies to a Scrapie Prion Protein. Nature. 1984; 310:418-421.

24

Schmerr M J, Jenny A. A diagnostic test for scrapie-infected sheep using a capillary electrophoresis immunoassay with fluorescent-labeled peptides. Electrophoresis. 1998; 19: 409-414 http://dx.doi.org/10.1002/elps.1150190308

25

Crameri G, Wang LF, Morrissy C, White J, Eaton BT. A rapid immune plaque assay for the detection of Hendra and Nipah viruses and anti-virus antibodies. J. Virol. Methods. 2002; 99(1-2):41-51. http://dx.doi.org/10.1016/S0166-0934(01)00377-9

26

Elson El, Magde D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers.1997. 4; 13:1–27.

27

S. Kim Ratanathanawongs, Williams Dean Lee Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J. Sep. Sci. 2006; 29: 1720 – 1732 http://dx.doi.org/10.1002/jssc.200600151

28

Gabriela P Saborio, Bruno Permanne & Claudio Soto Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001; 411: 810-813.http://dx.doi.org/10.1038/35081095

29

Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E. Pegylated, streptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjugate Chemistry. 2005; 16:559-566 http://dx.doi.org/10.1021/bc0497113

30

Wang KY. et al. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry. 1993; 32: 1899–1904 http://dx.doi.org/10.1021/bi00059a003

31

Ziegler C. Cantilever-based biosensors. Anal Bioanal Chem. 2004; 379:946-959.http://dx.doi.org/10.1007/s00216-004-2694-y

32

Anand A, R Moreira J, Henry M, Chowdhury G, Cote and T. A biosensing strategy for the detection of prions in foods. Good. 2005; 38(8): 849-858.

33

Madhukar Varshney, Philip S Waggoner, Christine P Tan, Keith Aubin, Richard A. Montagna, and Harold G Craighead. Prion Protein Detection Using Nanomechanical Resonator Arrays and Secondary Mass Labeling. Anal. Chem. 2008; 80: 2141-2148 http://dx.doi.org/10.1021/ac702153p

34

Gilles K Kouassi and Joseph Irudayaraj. A nanoparticle-based immobilization assay for prion-kinetics study. Journal of Nanobiotechnology. 2000; 6: 4-8

35

Surin Hong, Suseung Lee and Jongheop Yi. Sensitive and molecular size-selective detection of proteins using a chip-based and heteroliganded gold nanoisland by localized surface plasmon resonance spectroscopy. Nanoscale Research Letters. 2011; 6:336 http://dx.doi.org/10.1186/1556-276X-6-336

36

Wang WU, Chen C, Lin KH, Fang Y, Lieber CM. Label free detection of small molecule protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. USA. 2005; 102: 3208-3212. http://dx.doi.org/10.1073/pnas.0406368102

37

Beckman R, Johnston-Halperin E, Luo Y, Green JE, Heath JR. Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits. Science. 2005; 310:465-468.http://dx.doi.org/10.1126/science.1114757

38

Nam J-M, Park S-J, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc. 2002; 124:3820-3821.http://dx.doi.org/10.1021/ja0178766

39

Doh-Ura K, Iwaki T, Caughey B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie associated prion protein accumulation. J. Virol. 2000; 74:4894–97 http://dx.doi.org/10.1128/JVI.74.10.4894-4897.2000

40

Korth C, May BC, Cohen FE, Prusiner SB. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA 2001; 98:9836–41 http://dx.doi.org/10.1073/pnas.161274798

41

Adjou KT, Privat N, Demart S, et al. MS-8209, an amphotericin B analogue, delays the appearance of spongiosis, astrogliosis and PrPres accumulation in the brain of scrapie-infected hamsters. J. Comp. Pathol. 2000; 122:3–8 http://dx.doi.org/10.1053/jcpa.1999.0338

42

Pocchiari M, Schmittinger S, Masullo C.Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol. 1987; 68:219–23 http://dx.doi.org/10.1099/0022-1317-68-1-219

43

Doh-Ura K, Ishikawa K, Murakami-Kubo I, et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J. Virol. 2004; 78:4999–5006 http://dx.doi.org/10.1128/JVI.78.10.4999-5006.2004

44

Supattapone S, Nguyen HO, Cohen FE, et al. Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA 1999; 96:14529–34 http://dx.doi.org/10.1073/pnas.96.25.14529

45

Priola SA, Raines A, Caughey WS. Porphyrin and phthalocyanine antiscrapie compounds. Science. 2000; 287:1503– 6 http://dx.doi.org/10.1126/science.287.5457.1503

46

Tagliavini F, McArthur RA, Canciani B, et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science. 1997; 276:1119– 22 http://dx.doi.org/10.1126/science.276.5315.1119

47

Proske D, Gilch S, Wopfner F, et al. Prion-protein-specific aptamer reduces PrPSc formation. Chembiochemistry. 2002: 3:717–25 http://dx.doi.org/10.1002/1439-7633(20020802)3:8<717::AID-CBIC717>3.0.CO;2-C

48

Adjou KT, Simoneau S, Sales N, et al. A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J. Gen. Virol. 2003; 84:2595–603 http://dx.doi.org/10.1099/vir.0.19073-0

49

Gilch S, Winklhofer KF, Groschup MH, et al. Intracellular re-routing of prion protein prevents propagation of PrP (Sc) and delays onset of prion disease. EMBO J. 2001; 20:3957–66 http://dx.doi.org/10.1093/emboj/20.15.3957

50

Caughey B, Race RE. Potent inhibition of scrapie-associated PrP accumulation by Congo red. J. Neurochem. 1992; 59:768–71 http://dx.doi.org/10.1111/j.1471-4159.1992.tb09437.x

51

Murakami-Kubo I, Doh-Ura K, Ishikawa K, et al. Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J. Virol. 2004; 78:1281–88 http://dx.doi.org/10.1128/JVI.78.3.1281-1288.2004

52

May BC, Fafarman AT, Hong SB, et al. Potent inhibition of scrapie prion replication in cultured cells by bisacridines. Proc. Natl. Acad. Sci. USA 2003; 100:3416–21 http://dx.doi.org/10.1073/pnas.2627988100

53

Priola SA, Raines A, Caughey WS. Porphyrin and phthalocyanine antiscrapie compounds. Science. 2000; 287:1503–6 http://dx.doi.org/10.1126/science.287.5457.1503

54

Marella M, Lehmann S, Grassi J, et al. Filipin prevents pathological prion protein accumulation by reducing endocytosis and inducing cellular PrP release. J. Biol. Chem. 2002; 277:25457–64 http://dx.doi.org/10.1074/jbc.M203248200

55

Soto C, Kascsak RJ, Saborio GP, et al. Reversion of prion protein conformational changes by synthetic betasheet breaker peptides. Lancet 2000; 355:192– 97 http://dx.doi.org/10.1016/S0140-6736(99)11419-3

56

Bate C, Salmona M, Diomede L, Williams A. Squalestatin cures prion infected neurons and protects against prion neurotoxicity. J Biol. Chem. 2004; 279 (15):14983-90 http://dx.doi.org/10.1074/jbc. M313061200

57

Baines IC, Colas P. Peptide aptamers as guides for small molecule drug discovery. Drug. Discov Today. 2006; 11(7-8): 334-41 http://dx.doi.org/10.1016/j.drudis.2006.02.007

58

Beringue V, Vilette D, Mallinson G, Archer F, Kaisar M, Tayebi M, Jackson GS, Clarke AR, Laude H, Collinge J, Hawke S. PrPsc binding inhibitors of prion replication in cell lines. J Biol Chem. 2004; 279(38):39671-6.http://dx.doi.org/10.1074/jbc.M402270200

59

Famulok M, Mayer GAptamers as tools in molecular biology and immunology. Curr Top Microbiol Immunol 1999; 243:123-136 http://dx.doi.org/10.1007/978-3-642-60142-2_7

60

Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J, Elsasser HP, Schätzl HM: The anticancer drug imatinib induces cellular autophagy. Leukemia 2007; 21/5: 936-42.

61

Gregori L, McCombie N, Palmer D, Birch P, Sowemimo-Coker SO, Giulivi A, Rowher RG. Effectiveness of leucoreduction for removal of infectivity of transmissible spongiform encephalopathies from blood. Lancet.2004; 364: 529-531.http://dx.doi.org/10.1016/S0140-6736(04)16812-8

62

C. Chakraborty B, Sarkar C H, Hsu Z H, Wen CS, Lin P C, Shieh. Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol. 2009; 93:285–286 http://dx.doi.org/10.1007/s11060-008-9759-2

63

Giovanni T, Luca C, Barbara R, Flavio F, Maria AV, Polymeric nanoparticles for drug delivery to the central nervous system. Expert Opinion on Drug Delivery. 2008; 5(20): 155-174.

64

Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutyl cyano acrylate nanoparticles: an in situ brain perfusion study. J Microencapsul. 1998; 15:67–74. http://dx.doi.org/10.3109/02652049809006836

Nano Biomedicine and Engineering
Pages 50-57
Cite this article:
Praseetha P, Thampy AS, Venugopalan P, et al. Molecular Nanobiotechnological approaches for the detection and therapy of prion related diseases. Nano Biomedicine and Engineering, 2012, 4(2): 50-57. https://doi.org/10.5101/nbe.v4i2.p50-57

379

Views

13

Downloads

2

Crossref

2

Scopus

Altmetrics

Published: 30 June 2012
© 2012 PK Praseetha, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return