AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Laser nanothermolysis of human leukemia cells using functionalized plasmonic nanoparticles

Anton V. Liopo1( )André Conjusteau1Marina Konopleva2Michael Andreeff2Alexander A. Oraevsky1
TomoWave Laboratories, 6550 Mapleridge St., Suite 124, Houston TX 77081, USA
Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
Show Author Information

Abstract

In the present work, we present the use of gold nanorods as plasmonic nanoparticles for selective photothermal therapy of human acute (HL-60) and chronicle (K-562) leukemia cells using a near-infrared laser. We improved a published methodology of gold nanorods conjugation to generate high yields of narrow band gold nanorods with an optical absorption centered at 760 nm. The manufactured nanorods were pegylated and conjugated with monoclonal antibody to become non-toxic as biocompatible nanothermolysis agent. Gold nanorods are synthesized and conjugated to CD33 monoclonal antibody. After pegylation, or conjugation with CD33 antibody, gold nanorods were non-toxic to acute and chronic leukemia cells. Our modified gold nanorod CD33 conjugates shown high level of accumulation for both leukemia cell lines, and successful used for nanothermolysis of human leukemia cells in vitro. Each sample was illuminated with 1 or 3 laser shots as for low and for high laser fluence. The radiation was provided by a Quanta Systems q-switched titanium sapphire laser, and the system was designed for maximum sample coverage using non-focused illumination. HL-60 and K-562 cells were treated for 45 min with gold nanorods CD33 conjugated, or with pegylated gold nanorods. The effect of pulsed-laser nanothermolysis for acute and chronic leukemia cells were investigated with cell counting for number of living cells, percentage of cell death and functional parameters such as damage of cell membrane and metabolic activity. Gold nanorods CD33 conjugates significantly increase cell damage for low fluence laser and completely destroyed cancer cells after 3 pulses for low fluence (acute leukemia) and for high fluence laser as for HL-60 (acute) and for K-562 (chronicle) leukemia cells.

References

1

Perez-Juste J, Pastoria-Santos I, Liz-Marzan L M. and Mulvaney P. Gold nanorods: synthesis, characterization, and applications. Coordination Chemistry Reviews. 2005; 249: 1870-1901. Doi: 10.1016/j.ccr.2005.01.030.

2
Oraevsky, A., in Photoacoustic imaging and spectroscopy, Edited by L. Wang, Taylor and Francis Group, New York, 2009, chapter 30, doi: 10.1201/9781420059922.pt10.
3

Khlebstov N G. and Dykman L A. Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer. 2010; 111: 1-35. Doi: 10.1016/j.jqsrt.2009.07.012.

4

Xu W, Luo T, Pang B, Li P, Zhou C, Huang P, Zhang C, Ren Q. and Shen Fu S. The radiosensitization of melanoma cells by gold nanorods irradiated with MV X-ray. Nano Biomedicine and Engineering. 2012; 4: 6-11. Doi: 10.5101/nbe.v4i1.p6-11.

5

Liao H. and Hafner J. Gold nanorod bioconjugates. Chem. Mater. 2005; 17: 4636-4641. Doi: 10.1021/cm050935k.

6

Alkilany, A. M. and Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Research. 2010; 12: 2313-2333. Doi: 10.1007/s11051-010-9911-8.

7

Tiwari P M, Vig K, Dennis V A. and Singh S R. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011; 1: 31-63. Doi: 10.3390/nano1010031.

8

Huang X, El-Sayed H, and El-Sayed M A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods in Molecular Biology. 2010; 624: 343-357. Doi: 10.1007/978-1-60761-609-2_23.

9

Chen S, Ji Y, Lian Q, Wen Y, Shen H, and Jia N. Gold nanorods coated with multilayer polyelectrolyte as intracellular delivery vector of antisense oligonucleotides. Nano Biomedicine and Engineering. 2010; 2: 15-23. Doi: 10.5101/nbe.v2i1.p15-23.

10

Zhang X, Pan B, Wang K, Ruan J, Bao C, Yang H, He R. and Cui D. Electrochemical property and cell toxicity of gold electrode modified by monolayer PAMAM encapsulated gold nanorods. Nano Biomedicine and Engineering, 2010; 2: 182-188. Doi: 10.5101/nbe. v2i3.p182-188

11

Dickerson E, Dreaden E, Huang X, El-Sayed H, Chu H, Pushpanketh, S., McDonald, J. and El-Sayed, M. A. Gold nanorod assisted near infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008; 269: 57-66. Doi: 10.1016/j.canlet.2008.04.026.

12

Huang X, Jain P K, El-Sayed I H, and El-Sayed M A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2007; Doi: 10.1007/s10103-007-0470-x.

13

Huang X, El-Sayed I. H, Qian W, El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006; 128: 2115-2120. Doi:10.1021/ja057254a.

14

Su R, Liopo A V, Brecht H P, Ermilov SA. and Oraevsky A A. Gold nanorod distribution in mouse tissues after intravenous injection monitored with optoacoustic tomography. Proceedings SPIE. 2011; 7899: 78994B. Doi: 10.1117/12.889757.

15

Conjusteau A, Liopo AV, Tsyboulski D, Ermilov SA, Elliott W R, Barsalou N, Maswadi SM, Glickman R D, and Oraevsky AA. Optoacoustic sensor for nanoparticle linked immunosorbent assay (NanoLISA). Proceedings SPIE. 2011; 7899: 789910. Doi: 10.1117/12.879401.

16

Huang H, Rege K, and Heys J. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano. 2010; 4: 2892-2900. Doi: 10.1021/nn901884d.

17

Liao H W, Nehl C L, Hafner J H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomed. 2006; 1: 201-208. Doi: 10.2217/17435889.1.2.201

18

Chamberland D L, Agarwal A, Kotov N, Fowlkes J B, Carson P L, and Wang X. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study. Nanotechnology. 2008; 19: 095101. Doi: 10.1088/0957-4484/19/9/095101.

19

Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, and Kawano T. PEG-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release. 2006; 114: 343-347.Doi: 10.1016/j.jconrel.2006.06.017.

20

Roberts M J, Bentley MD. and Harris JM. Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews. 2002; 54: 459-476. Doi: 10.1016/S0169-409X(02)00022-4.

21

Rayavarapu R G, Petersen W, Hartsuiker L, Chin P, Janssen H, Leeuwen F W B, Otto, C., Manohar, S. and Leeuwen, T. G. In vitro toxicity studies of polymer coated gold nanorods. Nanotechnology. 2010; 21: 145101. Doi: 10.1088/0957-4484/21/14/145101.

22

Urbanska K, Romanowska-Dixon B. and Matuszak Z. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta. Biochim. Pol. 2002; 49: 387-391.

23

Lapotko D, Lukianova E, Potapnev M, Aleinikova O, and Oraevsky A. Method of laser activated nano-thermolysis for elimination of tumor cells. Cancer Lett. 2006; 239: 36-45. Doi: 10.1016/j.canlet.2005.07.031.

24

Letfullin R, Joenathan C, George T. and Zharov V. Laser-induced explosion of gold nanoparticles: potential role for nanophoto-thermolysis of cancer. Nanomedicine (London), 2006; 1: 473-480. Doi: 10.2217/17435889.1.4.473.

25

Maltzahn G V, Park J H, Agrawal A, Bandaru N K, Das S K, Sailor M J, and Bhatia SN. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas Cancer Res. 2009; 69: 3892-3900. Doi: 10.1158/0008-5472.CAN-08-4242.

26

Liopo A V, Conjusteau A, Konopleva M, Andreeff M. and Oraevsky A A. Photothermal therapy of acute leukemia cells in the near-infrared region using gold nanorods CD-33 conjugates. Proceedings SPIE. 2011; 7897: 789710. Doi: 10.1117/12.878802.

27

Rayavarapu RG, Petersen W, Ungureanu C, Post J N, Van Leeuwen T G, and Manohar S. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. International Journal of biomedical imaging. 2007; 2007: 29817. Doi: 10.1155/2007/29817.

28

Eghtedari M, Liopo A V, Copland J A, Oraevsky A A. and Motamedi M, Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells. Nano Lett. 2009; 9: 287-291. Doi: 10.1021/nl802915q.

29

Green H N, Martyshkin DV, Rodenburg CM. and Rosenthal EL. Gold nanorod bioconjugates for active tumor targeting and photothermal therapy. Journal of Nanotechnology, 2011; Article ID 631753: Doi: 10.1155/2011/631753.

30

Sau TK. and Murphy C J. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir. 2004; 20: 6414-6420. Doi: 10.1021/la049463z.

31

Eghtedari M, Oraevsky A A, Copland J A, Kotov N A, Conjusteau A, and Motamedi M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007; 7: 1914-1918. Doi: 10.1021/nl070557d.

32

Nikoobakht B. and El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemical Materials. 2003; 15: 1957-1962. Doi: 10.1021/cm020732l.

33

Chumakova O V, Liopo A, Andreev VG, Cicenaite I, Evers B M, Chakrabarty S, Pappas TC. and Esenaliev RO. Composition of PLGA and PEI/DNA nanoparticle improves ultrasound-mediated gene delivery in solid tumor in vivo. Cancer Lett. 2008; 261: 215-225. Doi: 10.1016/j.canlet.2007.11.023.

34

Liopo A, Conjusteau A. and Oraevsky A. PEG-coated gold nanorod monoclonal antobody conjugates in preclinical research with optoacoustic tomography, photothermal therapy, and sensing. Proc. SPIE. 2012; 8223: 822344. Doi: 10.1117/12.910838.

35

Rostro-Kohanloo BC, Bickford LR, Paynem CM, Day SE,Anderson L J E, Zhong M, Lee S, Mayer KM, Zal T, Adam L, Dinney CPM, Drezek R A, West JL. and Hafner J. The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology. 2009; 20: 434005. Doi: 10.1088/0957-4484/20/43/434005.

36

O'Reilly MK. and Paulson JC. Siglecs as targets for therapy in immune cell mediated disease Trends Pharmacol. Sci. 2009; 30: 240-248. Doi: 10.1016/j.tips.2009.02.005.

37

Tidwell T, Guzman G. and Vogler W. The effects of alkyl-lysophospholipids on leukemic cell lines I. Differential action on two leukemic cell lines, HL60 and K562. Blood. 1981; 57: 794-797.

38

Berdel, W. Ether lipids and analogs in experimental cancer therapy: A brief review of the Munich experience. Lipids, 1987; 22: 970-973.

39

Wagner B, Buettner G, Oberly L. and Burns C. Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species. Cancer Res. 1998; 58: 2809-2816.

40

Tosi P, Pellacani A, Visani G, Ottaviani E. and Tura S. Adenovial mediated gene transfer can be accomplished inhuman myeloid cell lines and is inhibited by all-trans retinoic acid-induced differentation Haematologica. 1997; 82: 387-391.

41

Muller C, Kumagai T, O'Reilly J, Seeram N, David Heber D, and Koeffler H. Ganoderma lucidum causes apoptosis in leukemia, lymphoma, and multiple myeloma cells. Leuk. Res. 2006; 30: 841-848.Doi: 10.1016/j.leukres.2005.12.004.

42

Roya S, Besraa S, Deb T, Banerjee B, Mukherjeed J, and Vedasiromoni J, Induction of apoptosis in human leukemic cell lines U937, K562 and HL-60 by litchi chinensis leaf extract via activation of mitochondria mediated caspase cascades. The Open Leukemia Journal. 2008; 1: 1-14. Doi:10.2174/1876816400 901010001.

43

Hleb EY, Hafner JH, Myers JN, Hanna EY, Rostro BC, Zhdanok S A, and Lapotko DO. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles. Nanomed. 2008; 3: 647-667. Doi: 10.2217/17435889.3.5.647.

44

Lukianova-Hleb, E. Y, Hanna E. Y, Hafner J, and Lapotko D. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology. 2010; 21: 85102. Doi: 10.1088/0957-4484/21/8/085102.

45

Wu TH, Teslaa T, Teitell MA. and Chiou PY. Photothermal nanoblade for patterned cell membrane cutting. Opt Express. 2010; 18: 23153. Doi: 10.1364/OE.18.023153.

46

Pistillides CM, Joe EK, Wei XB, Anderson RR. and Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003; 84: 4023.

47

Wang S, Chen KJ, Wu TH, Wang H, Lin WY, Ohashi M, Chiou PY, and Tseng HR. Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew Chem Int Ed Engl. 2010; 49: 3777. Doi: 10.1002/anie.201000062.

48

Wu TH, Kalim S, Callahan C, Teitell MA. and Chiou PY. Image patterned molecular delivery into live cells using gold particle coated substrates. Opt Express. 2010; 18: 938. Doi: 10.1364/OE.18.000938.

49

Tong L, Zhao Y, Huff TB, Hansen MN, Wei A. and Cheng JX. Gold nanorods mediated tumor cell death by compromising membrane integrity. Advanced Materials. 2007; 19: 3136. Doi: 10.1002/adma.200701974.

50

Tong L, Wei Q, Wei A. and Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol. 2009; 85: 21-32. Doi: 10.1111/j.1751-1097.2008.00507.x.

51

Stone J, Jackson S. and Wright D. Biological applications of gold nanorods. Wiley Interdisciplinary Rev: Nanomedicine Nanobiotechnology. 2010; 3: 100. Doi: 10.1002/wnan.120.

52

Bartczak D, Muskens OL, Millar TM, Sanchez-Elsner T. and Kanaras AG. Laser-induced damage and recovery of plasmonically targeted human endothelial cells. Nano Lett. 2011; 11: 1358. Doi: 10.1021/nl104528s.

Nano Biomedicine and Engineering
Pages 66-75
Cite this article:
Liopo AV, Conjusteau A, Konopleva M, et al. Laser nanothermolysis of human leukemia cells using functionalized plasmonic nanoparticles. Nano Biomedicine and Engineering, 2012, 4(2): 66-75. https://doi.org/10.5101/nbe.v4i2.p66-75

289

Views

5

Downloads

13

Crossref

0

Scopus

Altmetrics

Published: 30 June 2012
© 2012 Anton V. Liopo. et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return