AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (759.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum

Amit Kumar MittalAbhishek KalerUttam Chand Banerjee( )
Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar – 160062 Punjab, India
Show Author Information

Abstract

A simple and efficient eco-friendly approach for the biosynthesis of stable, monodisperse silver nanoparticles (AgNPs) using Rhododendron dauricum flower extract is described. Different reaction parameters (concentration of plant extract, substrate concentration, pH, temperature and reaction time) were optimized to synthesize AgNPs with controlled properties. AgNPs were characterized in terms of synthesis, size distribution (PDI of 0.25), capping functionalities (phenolic compounds) and microscopic evaluation by UV-Visible spectroscopy, dynamic light scattering, Fourier Transform Infrared (FTIR) spectroscopy and Transmission Electron Microscope (TEM). The specific characteristics and loss of organic content (1.81 mg) of the synthesized nanoparticles was measured by Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). The results showed the simplistic and feasible approach for obtaining stable aqueous monodispersive AgNPs. Further, the antioxidant activity of AgNPs imparted by plant phenolic components was evaluated using DPPH assay and found to be comparable to standard TROLOX.

References

1

Sonvico F, Dubernet C, Colombo P, Couvreur P. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr. Pharm. Design. 2005; 11:2091-2105. http://dx.doi.org/10.2174/1381612054065738.

2

Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 2000; 1:18-52. DOI: 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L.

3

Callegari A, Tonti D, Chergui M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett. 2003; 3:1565-1568. DOI: 10.1021/nl034757a.

4

Kelly KL, Coronado E, Zhao LL, Schatz GC. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003; 107:668-677. DOI: 10.1021/jp026731y.

5

Song Y, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc. Biosyst. Eng. 2009; 32:79-84. DOI: 10.1007/s00449-008-0224-6.

6

Bar H, Bhui DKr, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A. 2009; 339:134-139. DOI: 10.1016/j.colsurfa.2009.02.008.

7

Xiangqian L, Huizhong X, Zhe-Sheng C, Guofang C. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011. DOI: 10.1155/2011/270974.

8

Kaler A, Nankar R, Bhattacharyya MS, Banerjee UC. Extracellular Biosynthesis of Silver Nanoparticles Using Aqueous Extract of Candida viswanathii. J. Bionanosci. 5; 2011:53-58. DOI: 10.1166/jbns.2011.1040.

9

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13:2638-2650. DOI: 10.1039/C1GC15386B.

10

Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interfac. 2010; 156:1-13. DOI: 10.1016/j.cis.2011.08.004.

11

bilash G, Podila R, Karanam L, Chelli J, Rao AM. Catalytic Reduction of 4-Nitrophenol using Biogenic Gold and Silver Nanoparticles Derived from Breynia rhamnoides. Langmuir. 2011; 27:15268–15274. DOI: 10.1021/la2034559.

12

Park Y, Hong Y, Weyers A, Kim Y, Linhardt R. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. Nanobiotechnology IET. 2011; 5:69-78. DOI: 10.1049/iet-nbt.2010.0033.

13

Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res. 2011; 108:693-702. DOI: 10.1007/s00436-010-2115-4.

14

Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 2006; 19:669-675. DOI: 10.1016/j.jfca.2006.01.003.

15

Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004; 104:293-346. DOI: 10.1002/chin.200416213.

16

Mandal S, Rautaray D, Sastry M, Ag+–Keggin ion colloidal particles as novel templates for the growth of silver nanoparticle assemblies. J. Mat. Chem. 2003; 13:3002-3005. DOI: 10.1039/B307000J.

17

Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 2007; 18: 105104 (11pp). doi: 10.1088/0957-4484/18/10/105104. DOI:10.1088/0957-4484/18/10/105104.

18

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005; 16:2346. DOI: 10.1088/0957-4484/16/10/059.

19

Ahmad N, Sharma S, Alam MK, Singh V, Shamsi S, Mehta B, Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B. 2010; 81:81-86. DOI: 10.1016/j.colsurfb.2010.06.029.

20

Dwivedi A D, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A. 2010; 369:27-33. DOI: 10.1016/j.colsurfa.2010.07.020.

21

Van Hyning DL, Klemperer WG, Zukoski CF. Silver nanoparticle formation: Predictions and verification of the aggregative growth model. Langmuir. 2001; 17:3128-3135. DOI: 10.1021/la000856h.

22

Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009; 44:1133-1138. DOI: 10.1016/j.procbio.2009.06.005

23

Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A. 2011; 79:594-598. DOI: 10.1016/j.saa.2011.03.040.

24

Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir. 2004; 20:7825-7836. DOI: 10.1021/la049258j.

25

Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Technol. 2010; 101:7958-65. DOI: 10.1016/j.biortech.2010.05.051.

26

Singh C, Sharma V, Naik PK, Khandelwal V, Singh H. A green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. Dig. J. Nanomater. Biostruct. 2011; 6:535-42.

27

Li S, Shen Y, Xie A, Yu X, Qiu L, Li Z, Zhang Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007; 9: 852-858. DOI: 10.1039/B615357G.

28

Cao Y, Chu Q, Ye J. Chromatographic and electrophoretic methods for pharmaceutically active compounds in Rhododendron dauricum. J. Chromatogr. B. 2004; 812:231-240. DOI: 10.1016/j.jchromb.2004.06.048.

29

Cao Y, Lou C, Fang Y, Ye J. Determination of active ingredients of Rhododendron dauricum L. by capillary electrophoresis with electrochemical detection. J. Chromatogr. A. 2002; 943:153-157. DOI: 10.1016/S0021-9673(01)01434-0.

30

Philip] D. Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2011; 78: 327-331. DOI: 10.1016/j.saa.2010.10.015.

31

Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem(Azadirachta indica)leaf broth.J. Colloid Interface Sci. 2004; 275:496-502. DOI: 10.1016/j.jcis.2004.03.003.

32

Pol VG, Srivastava D, Palchik O, Palchik V, Slifkin M, Weiss A, Gedanken A. Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir. 2002; 18:3352-3357. DOI: 10.1021/la0155552.

33

Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract. Arab.J. Chem. 2010. DOI: 10.1016/j.arabjc.2010.11.011.

Nano Biomedicine and Engineering
Pages 118-124
Cite this article:
Mittal AK, Kaler A, Banerjee UC. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum. Nano Biomedicine and Engineering, 2012, 4(3): 118-124. https://doi.org/10.5101/nbe.v4i3.p118-124

850

Views

29

Downloads

131

Crossref

172

Scopus

Altmetrics

Published: 30 September 2012
© 2012 A.K. Mittal, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return