AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (666.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Novel water soluble dendrimer nanocarrier for enhanced photodynamic efficacy of protoporphyrin Ⅸ

Murugesan Suresh Kumar1Anish Babu2Ramachandran Murugesan2,3Kadarkaraithangam Jeyasubramanian1( )
Department of Nanoscience and Technology, Mepco Schlenk Engineering College, Sivakasi-626005, INDIA
School of Biological Sciences, Madurai Kamaraj University, Madurai-625021, INDIA
Facuty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai-600310, INDIA
Show Author Information

Abstract

The present study describes the development and evaluation of a novel biocompatible dendrimer-based nano drug delivery system which is readily soluble in water prepared by condensing Phloroglucinol and Succinic Acid (PGSA) and could efficiently encapsulate a well known hydrophobic photodynamic therapy (PDT) agent, protoporphyrin Ⅸ (PpⅨ). The (dark and photo) cytotoxicity of the PGSA-PpⅨ (dendrimer-drug) formulation towards Dalton Lymphoma Ascites (DLA) cancer cell lines upon visible light treatment is reported and evaluated the cytotoxic Reactive Oxygen Species (ROS) generation efficiency of the Protoporphyrin Ⅸ in free and dendrimer encapsulated forms. The in vitro toxicity demonstrated by PpⅨ loaded PGSA dendrimer nanoformulation, on DLA cells reveals that this novel PGSA nanocarrier reduces the toxic nature of PpⅨ when compared to free PpⅨ without light treatment which satisfy the aim of our study. On the other hand, treatment of DLA cells with PGSA dendrimer formulation in combination with light resulted in significant enhancement in therapeutic efficacy of the PDT agent, PpⅨ.

References

1

Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008; 26: 612-621. http://dx.doi:10.1016/j.tibtech.2008.07.007.

2

Vargas A, Pegaz B, Debefve E, Konan-Kouakou Y, Lange N, Ballini J, van den Bergh H, Gurny R, Delie F. Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int. J. Pharm. 2004; 286: 131-145. http://dx.doi:10.1016/j.ijpharm.2004.07.029.

3

Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998; 90: 889-905.

4

Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006; 6(7): 535-545. http://dx.doi:10.1038/nrc1894.

5

Gollnick SO, Brackett CM. Enhancement of anti-tumor immunity by photodynamic therapy. Immunol. Res. 2010; 46: 216-226. http://dx.doi:10.1007/s12026-009-8119-4.

6

Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Delivery Rev. 2008; 60: 1627-1637. http://dx.doi:10.1016/j.addr.2008.08.00.

7

Konan YN, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem.Photobiol., B 2002; 66: 89-106.

8

Babu A, Jeyasubramanian K, Gunasekaran P, and Murugesan R. Gelatin nanocarrier enables efficient delivery and phototoxicity of hypocrellin B against a mice tumour model. J. BiomedNanotechnol. 2012; 8: 1-14. http://dx.doi:10.1166/jbn.2012.1354.

9

Roby A, Erdogan S, Torchilin VP. Enhanced in vivo antitumor efficacy of poorly soluble PDT agent, meso-tetraphenylporphine, in PEG-PE-Based tumor-targeted immunomicelles. Cancer Biol. Ther. 2007; 6: 1136-1142.

10

Olivo M, Bhuvaneswari R, Swarnalatha Lucky S, Dendukuri N and Soo-Ping Thong P. Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals 2010; 3: 1507-1529. http://dx.doi:10.3390/ph3051507.

11

Qiu LY and Bae YH. Polymer architecture and drug delivery.Pharm Res.2006;23:1-30.http://dx.doi:10.1007/s11095-005-9046-2

12

Boas U and. Heegaard PMH. Dendrimers in drug research. Chem. Soc. Rev. 2004; 33: 43-63. http://dx.doi:10.1039/b309043b.

13

Li Y, Cheng Y, Xu T. Design, Synthesis and potent pharmaceutical applications of glycodendrimers: A mini review. Current Drug Discovery Technologies, 2007; 4(4): 246-254.

14

Jayamurugan G and Jayaraman N. Synthesis of large generation poly(propyl ether imine) (PETIM) dendrimers. Tetrahedron. 2006; 62: 9582-9588. http://dx.doi:10.1016/j.tet.2006.07.094.

15

Jayamurugan G, Umesh CP, Jayaraman N. Inherent photoluminescence properties of poly(propyl ether imine) dendrimers. Org. Lett. 2008; 10: 9-12. http://dx.doi:10.1021/ol702635w.

16

Ballico M, Drioli S, and Bonora GM. MultiPEGs: High molecular weight multifunctional poly(ethylene glycol)s assembled by a dendrimer-like approach. Eur. J. Org. Chem. 2005; 2064-2073. http://dx.doi:10.1002/ejoc.200400704.

17

Lee SJ, Park K, Oh YK, Kwon SH, Her S, Kim IS, Choi K, Lee SG, Kim H, Lee SG, Kim K, Kwon IC. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials. 2009; 30: 2929-2939. http://dx.doi:10.1016/j.biomaterials.2009.01.058.

18

Conway CL, Walker I, Bell A, Roberts DJH, Brown SB, Vernon and Vernon DI. In vivo in vitro characteristic of a protoporphyrin Ⅸ-cyclic RGD peptide conjugate for use in photodynamic therapy. Photochem. Photobiol. Sci. 2008; 7: 290-298. http://dx.doi:10.1039/b715141a.

19

Kojima C, Toi Y, Harada A, and Kono K. Preparation of poly-(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Bioconjugate Chem. 2007; 18: 663-670. http://dx.doi:10.1021/bc060244u.

20

Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer Treatment. Adv. Drug Delivery Rev. 2008; 60: 1037-1055. http://dx.doi:10.1016/j.addr.2008.02.012.

21

Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release. 2000; 65: 133-148. http://dx.doi.org/10.1016/S0168-3659(99)00246-1.

22

Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv. Drug Delivery Rev. 2010; 62: 478-490. http://dx.doi:10.1016/j.addr.2009.11.018.

23

Miyano T, Wijagkanalan W, Kawakami S, Yamashita F and Hashida M. Anionic amino acid dendrimer-trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol. Pharmaceutics. 2010; 7: 1318-1327. http://dx.doi:10.1021/mp100105c.

24

Bai S and Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm. Res. 2009; 26: 539-548. http://dx.doi:10.1007/s11095-008-9769-y.

25

Cheng Y, Zhao L, Li Y and Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem. Soc. Rev. 2011; 40: 2673-2703, http://dx.doi:10.1039/c0cs00097c.

26

Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Delivery Rev. 2005; 57: 2215-2237. http://dx.doi:10.1016/j.addr.2005.09.019.

27

Bermejo JF, Ortega P, Chonco L, Eritja R, Samaniego R, Mullner M, De Jesus E, De la Mata FJ, Flores JC, Gomez R, and MunozFernandez A. Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chem. Eur. J. 2007; 13: 483-495. http://dx.doi:10.1002/chem.200600594.

28

Padilla De Jesus OL, Ihre HR, Gagne L, Fréchet JMJ and Szoka Jr FC. Polyester dendritic systems for drug delivery applications: In Vitro and In Vivo evaluation. Bioconjugate Chem. 2002; 13: 453-461.http://dx.doi:10.1021/bc010103m.

29

Kaneshiro TL and Lu ZR. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimerbased nanoglobular carrier. Biomaterials. 2009; 30: 5660–5666. http://dx.doi:10.1016/j.biomaterials.2009.06.026.

30

Wang S, Chen A, Weng L, Chen M, Xie X. Effect of drugloading methods on drug load, encapsulation efficiency and release properties of alginate/poly-L-arginine/chitosan ternary Complex microcapsules. Macromol. Biosci. 2004; 4: 27-30. http://dx.doi:10.1002/mabi.200300043.

31

Levy MY, Benita S. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int.J.Pharm.1990; 66: 29-37.

32

Mosinger J, Micka Z. Quantum yields of singlet oxygen of metal complexes of meso- tetrakis(sulphonatophenyl)porphine. J. Photochem. and Photobiol., A. 1997; 107: 7782. http://dx.doi.org/10.1016/S1010-6030(96)04613-8.

Nano Biomedicine and Engineering
Pages 132-138
Cite this article:
Kumar MS, Babu A, Murugesan R, et al. Novel water soluble dendrimer nanocarrier for enhanced photodynamic efficacy of protoporphyrin Ⅸ. Nano Biomedicine and Engineering, 2012, 4(3): 132-138. https://doi.org/10.5101/nbe.v4i3.p132-138

382

Views

8

Downloads

5

Crossref

12

Scopus

Altmetrics

Published: 30 September 2012
© 2012 M.S. Kumar et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return