AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (748.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances in the Toxicity of Nanomaterials

Xuan DaiDaxiang Cui( )
Department of Bio-Nano-Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Show Author Information

Abstract

Over the past few years, nanomaterials toxicology has emerged as a new exciting field in which theoretical and experimental studies of toxicity of nanomaterials have become a focus, and the importance of carbon nanotubes (CNTs), graphene oxide (GO), quantum dots (QDs), magnetic nanoparticles (MNPs), and amorphous silica nanoparticles (ASN) as special nanomaterials to the fundamental development in biomedical engineering has begun to be recognized. In particular, interaction between nanomaterials and nucleic acids, proteins or cells, animals, environment, etc. has become a new interdisciplinary frontier, there is an increasing need for a more systematic study of the basic issues involved in nanomaterials toxicity and potential toxicity-reducing methods, great advances have been and are being made in nanomaterials’ biological effects and application in disease diagnosis and therapy. Here we review some of the main advances in this field over past few years, and discuss about the concepts, issues, approaches, and challenges, with the aim of stimulating a broader interest in studying the toxicological mechanism of nanomaterials and potential toxicity- eliminating measurement.

References

1

Tambe NS, Bhushan B. Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications. Ultramicroscopy., 2005; 105:238-247. doi: 10.1016/j.ultramic.2005.06.050

2

Burton Z, Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett., 2005; 5:1607-1613. doi: 10.1021/nl050861b

3

Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science, 2002; 295: 1503-1506.doi: 10.1126/science.1067003

4

Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat. biotechnol., 2003; 21: 1192-1199. doi: 10.1038/nbt873

5

Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. biotechnol., 2001; 19: 365-370. doi: 10.1038/86762

6

Attard P, Moody MP, Tyrrell JW. Nanobubbles: the big picture. Physica A, 2002; 314: 696-705. doi: 10.1016/S0378-4371(02)01191-3

7

Zhang Z, Fan C, He L. Development of nano-scale DNA computing devices. Cur. Nanosci., 2005; 1: 91. doi: 10.2174/1573413052953138

8

Cui Y, Wei Q, Park H, Lieber, CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001; 293: 1289-1292. doi: 10.1126/science.1062711

9

Kim P, Lieber CM. Nanotube nanotweezers. Science, 1999; 286: 2148-2150. doi: 10.1126/science.286.5447.2148

10

Mirkin CA, Taton TA. Semiconductors meet biology. Nature, 2000; 405: 626-627. doi: 10.1038/35015190

11

Bottini M, Bruckner S, Nika K, Bottni N. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett., 2006; 160: 121-126. doi: 10.1016/j.toxlet.2005.06.020

12

Byon HR, Hong BJ, Gho YS, Park JW. Pseudo 3D single walled carbon nanotube film for BSA-free protein chips. ChemBioChem., 2005; 6: 1331-1334. doi: 10.1002/cbic.200500081

13

Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystal synthesis. Nature, 2005; 437: 121-124. doi: 10.1038/nature03968

14

Inoue K, Takano H, Ohnuki M. Size effects of nanomaterials on lung inflammation and coagulatory disturbance. Int. j. immunopath. ph., 2008; 21: 197. doi: 10.1498/289910

15

Klaine SJ, Alvarez PJ, Handy, RD. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem., 2009; 27: 1825-1851. doi: 10.1897/08-090.1

16

NiaziandManBockGu JH. Toxicity of metallic nanoparticles in microorganisms-a review. Atmospheric and Biological Environmental Monitoring., 2009; 193. doi: 10.1729/97-810.3

17

Nagao E, Nishijima H, Akita S, Nakayama Y. The cell biological application of carbon nanotube probes for atomic force microscopy: comparative studies of malaria-infected erythrocytes. J. electron microsc., 2000; 49: 453-458. doi: 10.1628/82-723.7

18

Hafner JH, Cheung CL, Woolley AT. Structural and functional imaging with carbon nanotube AFM probes. Progress in biophysics and molecular biology., 2001;77: 73-110. doi: 10.1016/S0079-6107(01)00011-6

19

Cui D, Gao H. Advance and prospect of bionanomaterials. Biotechnol. progr. 2003; 19: 683-683. doi: 10.1021/bp025791i

20

Cui D, Ozkan CS, Kong Y. Encapsulation of Pt-labelled DNA molecules inside carbon nanotubes. Mech. Chem. Biosyst., 2004; 1: 113-121. doi: 10.1557/PROC-820-O4.6

21

Cui D, Tian F, Ozkan CS, Wang M. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett., 2005; 155: 73-85. doi: 10.1016/j.toxlet.2004.08.015

22

Huczko A, Lange H, Calko E, Droszcz P. Physiological testing of carbon nanotubes: are they asbestos-like. Fullerene science and technology., 2001; 9: 251-254. doi: 10.1081/FST-100102973

23

Chan HC, Kuo SC, Huang LJ. A phenylacetate derivative, SCK6, inhibits cell proliferation via G1 cell cycle arrest and apoptosis. Eur. j. pharmacol., 2003; 467: 31. doi: 10.1016/S0014-2999(03)01596-6

24

Lam CW, James JT, McCluskey R. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation.Toxicol Sci.,2004; 77:126-34. doi: 10.1093/toxsci/kfg243

25

Poland CA, Duffin R, Kinloch I, Maynard A. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol., 2008; 3: 423-8. doi: 10.1038/nnano.2008.111

26

Yuan HG, Hu SL, Huang P, Song H. Single walled carbon nanotubes exhibit dual-phase regulation to exposed arabidopsis mesophyll cells. Nanoscale Res. Lett.,2010. doi: 10.1007/s11671-010-9799-3

27
Cui D, Zhang H, Wang K, Toru A. Endocytosis of fluorescent carbon nanotubes in embryonic stem cells. Nanoscale Res., doi: 10.1007/s11671-009-9292-z
28

Lu CH, Zhu CL, Li J. Using graphene to protect DNA from cleavage during cellular delivery. Chem. Comm., 2010; 46: 3116-3118. doi: 10.1039/b926893f

29

Sun, X. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008; 1:203-212. doi: 10.1007/s12274-008-8021-8

30

Zhang L, Xia J, Zhao Q. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2009; 6: 537-544. doi: 10.1002/smll.200901680

31

Chang Y, Yang ST, Liu JH, Dong E. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett., 2011; 200:201-10. doi: 10.1016/j.toxlet.2010.11.016

32

Ryoo SR, Kim YK, Kim MH, Min DH.Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano, 2010; 4: 6587-6598. doi: 10.1021/nn1018279

33

Wang K, Ruan J, Song H, Zhang JL. Biocompatibility of graphene oxide. Nanoscale Res., 2010. doi: 10.189/7382-2312.1

34

Zhang Y, Ali SF, Dervishi E. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010; 4: 3181-3186. doi: 10.1021/nn1007176

35

Chan WCW, Maxwell DJ, Gao X. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotech., 2002; 13: 40-46. doi: 10.1016/S0958-1669(02)00282-3

36

Jamieson T, Bakhshi R, Petrova D. Biological applications of quantum dots. Biomaterials., 2007; 28: 4717-32. doi: 10.1016/j.biomaterials.2007.07.014

37

Chan, W.H., N.H. Shiao, and P.Z. Lu, CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett., 2006; 167: 191-200. doi: 10.1016/j.toxlet.2006.09.007

38

Lovric J, Bazzi HS, Cuie Y. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. (Berl), 2005; 83: 377-85. doi: 10.1007/s00109-004-0629-x

39

Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004; 4: 11-18. doi: 10.1021/nl0347334

40

Hoshino A, Fujioka K, Oku T. Physicochemical properties and cellular toxicity of nanocrystal quantum dot depend on their surface modification. Nano Lett., 2004;4:2163-2169.doi: 10.1021/nl048715d

41

Wang D, He J, Rosenzweig N. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett.,2004; 4: 409-413. doi: 10.1021/nl035010n

42

Wang FH, Yoshitake T, Kim Dk. Determination of conjugation efficiency of antibodies and proteins to the superparamagnetic iron oxide nanoparticles by capillary electrophoresis with laser-induced fluorescence detection. J. Nanopart. Res.,2003; 5: 137-146. doi: 10.1023/A:1024428417660

43

Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004; 25: 3029-3040. doi: 10.1016/j.biomaterials.2003.09.095

44

Chomoucka J, Huska D. Magnetic nanoparticles and targeted drug delivering. Pharmacol. res., 2010; 62: 144-149. doi: 10.1016/j.phrs.2010.01.014

45

Kim JS, Yoon TJ, Yu KN, Kim BG. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci., 2006; 89: 338-47. doi: 10.1093/toxsci/kfj027

46

Jain TK, Reddy MK, Morales MA. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. pharmaceut., 2008; 5: 316-327. doi: 10.1021/mp7001285

47

Ruan J, Wang K, Song H, Xu X. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles. Nanoscale Res. Lett., 2011; 6: 299. doi: 10.1186/1556-276X-6-299

48

Lin W, Huang YW, Zhou XD, Ma YF. In vitro toxicity of silica anoparticles in human lung cancer cells. Toxicol. Appl. Pharm., 2006; 217: 252-259. doi: 10.1016/j.taap.2006.10.004

49

Yu KO, Grabinski CM, Schrand AM. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanopart. Res., 2008; 11: 15-24. doi: 10.1007/s11051-008-9417-9

50

Chang Y, Yang ST, Liu JH, Dong E. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011; 200: 201-210. doi: 10.1016/j.toxlet.2010.11.016

Nano Biomedicine and Engineering
Pages 150-156
Cite this article:
Dai X, Cui D. Advances in the Toxicity of Nanomaterials. Nano Biomedicine and Engineering, 2012, 4(3): 150-156. https://doi.org/10.5101/nbe.v4i3.p150-156

227

Views

11

Downloads

1

Crossref

2

Scopus

Altmetrics

Published: 30 September 2012
© 2012 X. Dai and D.X. Cui.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return