AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Views | Open Access

Biological Applications of Graphene and Graphene Oxide

Congyu WuYan zhangXiaochen WuYongqiang YangXuejiao ZhouHaixia Wu( )
Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Show Author Information

Abstract

Graphene, as a steady two dimensional (2D) carbon material, possesses intriguing physical and chemical properties, which arouses great interests of scientists for its applications in enormous fields. In particular, graphene and graphene oxide have been widely used for drug delivery and DNA detection based on π-π stacking and hydrophobic interactions. Besides, graphene with fluorescent molecules or nanoparticles and graphene quantum dots have also been frequently applied as fluorescent probe. In this article, advances of graphene and graphene oxide on biomedical applications will be highlighted from the perspective of biomolecular interaction, cell imaging, drug delivery, and toxicity.

References

1

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang. Y Zhang, S.V. Dubonos, I.V. Grigorieva, A.A.Firsov, Electric field effect in atomically thin carbon films. Science 2004; 306: 666-9.

2

Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.M. Cheng, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009; 3: 411-7.

3

A. Reina, X Jia, J. Ho, D. Nezich, H. Son; V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009; 9: 30-35.

4

P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 2008; 7: 406-11.

5

D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008; 3: 101-105.

6

V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009; 4: 25-29.

7

J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid. Chem. Comm. 2010; 46: 1112.

8

T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, A green approach for the reduction of graphene oxide by wild carrot root. Carbon 2012; 50: 914-921.

9

A.K. Geim, Graphene: status and prospects. Science 2009; 324: 1530-1534.

10

L. Feng, Z. Liu, Graphene in biomedicine: opportunities and challenges. Nanomedicine (Lond) 2011; 6: 317-324.

11

A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 2007; 6: 183-191.

12

S. Guo, S. Dong, Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 2011; 21: 18503.

13

S. Yang, X. Feng, S. Ivanovici, K. Mullen, Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. Engl. 2010; 49: 8408-8411.

14

Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008; 130: 10876-7.

15

X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008; 1: 203-212.

16

H. Lei, L. Mi, X. Zhou, J. Chen, J. Hu, S. Guo, Y. Zhang, Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 2011; 3: 3888.

17

H. Ren, C. Wang, J. Zhang, X. Zhou, D. Xu, J. Zheng, S. Guo, DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 2010; 4: 7169-74.

18

M. Wu, R. Kempaiah, J.J. Huang, V. Maheshwari, J. Liu, Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides. Langmuir 2011; 27: 2731-2738.

19

H. Bao, Y. Pan, Y. Ping, N.G. Sahoo, T. Wu, L. Li, J. Li, L.H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 2011; 7: 1569-1578.

20

Y. Zhang, J. Zhang, X. Huang, X. Zhou, H. Wu, S. Guo, Assembly of graphene oxide-rnzyme vonjugates through hydrophobic interaction. Small 2012; 8: 154-159.

21

C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A Graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009; 48: 4785-4787.

22

L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 2011; 7: 460-464.

23

L. Feng, S. Zhang, Z. Liu, Graphene based gene transfection. Nanoscale 2011; 3: 1252.

24

M.L. Chen, J.W. Liu, B. Hu, J.H. Wang, Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst 2011; 136: 4277-83.

25

C. Peng, W. Hu, Y. Zhou, C. Fan, Q. Huang, Intracellular imaging with a graphene-based fluorescent probe. Small 2010; 6: 1686-1692.

26

S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Comm. 2011; 47: 6858.

27

X. Sun, D. Luo, J. Liu, D.G. Evans, Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 2010; 4: 3381-3389.

28

R. Liu, D. Wu, X. Feng, K. Mullen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011; 133: 15221-15223.

29

L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic Dirac billiard in graphene quantum dots. Science 2008; 320: 356-358.

30

J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 2012: 120106121847009.

31

J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009; 3: 2367-2375.

32

Y. Xu, A. Malkovskiy, Y. Pang, A graphene binding-promoted fluore-scence enhancement for bovine serum albumin recognition. Chem. Comm. 2011; 47: 6662-6664.

33

K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010; 10: 3318-3323.

34

B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011; 5: 7000-7009.

35

Y. Chang, S.T. Yang, J.H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu. H. Wang, In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011; 200: 201-210.

36

Y. Zhang, S.F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A.S. Biris, Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010; 4: 3181-3186.

37

K.H. Liao, Y.S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS appl. mater. inter. 2011; 3: 2607-2615.

Nano Biomedicine and Engineering
Pages 157-162
Cite this article:
Wu C, zhang Y, Wu X, et al. Biological Applications of Graphene and Graphene Oxide. Nano Biomedicine and Engineering, 2012, 4(4): 157-162. https://doi.org/10.5101/nbe.v4i4.p157-162

357

Views

10

Downloads

11

Crossref

13

Scopus

Altmetrics

Published: 31 December 2012
© 2012 C.Y. Wu et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return