AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (455.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Ciprofloxacin-loaded Chitosan Nanoparticles as Titanium Coatings: A Valuable Strategy to Prevent Implant-associated Infections

Elvira De Giglio1( )Adriana Trapani2Damiana Cafagna1Concetta Ferretti3Roberta Iatta4Stefania Cometa5Edmondo Ceci6Antonella Romanelli1Monica Mattioli-Belmonte3
Dept. of Chemistry, University of BariAldo Moro,Bari,Italy
Dept. of Pharmacy, University of BariAldo Moro,Bari,Italy
Dept. of Clinical and Molecular Sciences, UniversitàPolitecnicadelle Marche, Ancona, Italy
Dept. of Biomedical Sciences and Human Oncology, University of BariAldo Moro, Bari, Italy
BIOLab, Chemistry & Industrial Chemistry Department, University of Pisa, Pisa, Italy
Department of Public Health, University of Bari Aldo Moro, Bari, Italy
Show Author Information

Abstract

Orthopaedic infections represent one of the major causes of implant failure. Systemic treatment is limited due to dosing, side-effects, patient compliance, treatment length and resistant bacteria. The choice of antibiotic incorporation method has been the subject of many investigations and, nowadays, various vehicles for local drug delivery have been studied. In this work, a novel ciprofloxacin loaded chitosan nanoparticles coating system onto titanium surface has been developed and characterized. The antibiotic release capability of this system and its ability to inhibit the in vitro growth of two of the most common pathogens causing orthopaedic implant-related infections, Staphylococcus aureus and Pseudomonas aeruginosa, have been evaluated. Preliminary biocompatibility data arising from MG63 osteoblast-like cells seeding on the ciprofloxacin-loaded systems have also been discussed. The investigated system represents a promising candidate in view of the development of new antibiotic carriers in situ for preventing titanium implant-associated infections.

References

1

Qiu Y., Zhang N., An Y.H., Wen X., Biomaterial strategies to reduce implant-associated infections, Int. J. Artif. Organs 2007; 30: 828-841.

2

Buchholz H.W., Engelbrecht H., Uber die depotwir-kung einiger antibiotica bei vermischung mit dem kunstharz Palacos, Chirurg. 1970; 41:51.

3

Lucke M., Schmidmaier G., Sadoni S., Wildemann B., Schiller R., Haas N.P., Raschkea M., Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats, Bone. 2003; 32: 521-531.

4

Hongshuai L., Ogle H., Bingbing J., Hagar M., Bingyun L., Cefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell response, J. Orthop. Res. 2010; 28: 979-1118.

5

Brohede U., Forsgren J., Roos S., Mihranyan A., Engqvist H., Strømme M., Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release, J. Mater.Sci. Mater. Med. 2009; 20: 1859-1867.

6

Binoy J., Antoci V., Zeiger A.R., Wickstroml E., Hickok N.J., Vancomycin covalently bonded to titanium bead kills Staphylococcus aureus, Chem. Biol. 2005; 9:1041-1048.

7

De Giglio E., Cafagna D., Cometa S., Allegretta A., Pedico A., Giannossa L.C., Sabbatini L., Mattioli-Belmonte M., Iatta R., An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization, Anal. Bioanal. Chem. 2012; in press.

8

Giammona G., Pitarresi G., Palumbo F., Romano C.L., Meani E., Cremascoli E., Antibacterial hydrogel and use thereof in orthopedics. Patent Cooperation Treaty Application, 2010.

9

De Giglio E., Cometa S., Satriano C., Sabbatini L., Zambonin P.G., Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. J. Biomed. Mater. Res.A 2009;88:1048-1057.

10

De Giglio E., Cometa S., Calvano C.D., Sabbatini L., Zambonin P.G., Colucci S., Benedetto A.D., Colaianni G., A new titanium biofunctionalized interface based on poly(pyrrole-3-acetic acid) coating: Proliferation of osteoblast-like cells and future perspectives, J. Mater. Sci. Mater. Med. 2007; 18: 1781-1789.

11

De Giglio E., Cometa S., Ricci M.A., Cafagna D., Savino A.M., Sabbatini L., Orciani M., Ceci E., Novello L., Tantillo G.M., Mattioli-Belmonte M., Ciprofloxacin-modified electrosynthetized hydrogel coatings to prevent titanium-implant-associated infections, Acta. Biomater. 2011; 7: 882-891.

12

Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M., Recent advances on chitosan based micro and nanoparticles in drug delivery, J. Control. Release. 2004; 100: 5-28.

13

Park J.H., Saravanakumar G., Kim K., Kwon I.C., Targeted delivery of low molecular drugs using chitosan and its derivatives, Adv. Drug Deliv. Rev. 2010; 62:28.

14

De Giglio E., Trapani A., Cafagna D., Sabbatini L., Cometa S., Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Anal, Bioanal, Chem. 2011; 400: 1997-2002.

15

Mulligan M.E., Murray-Leisure K.A., Ribner B.S., Methicillin resistant s.aureus:a consensus review of the microbiology pathogenesis, and epidemiology with implications for prevention and management, Am. J. Med. 1993; 94:313.

16

Gagnon R.F., Richards G.K., Subang R., Experimental s. epidermidis implant infection in the mouse. Kinetics of rifampin and vancomycin action, ASAIO J. 1992; 38(3):596.

17

Radhakumary C., Molly A., Sreenivasan, K., Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing, Carbohyd Polym. 2011; 83: 705-713.

18

Trapani A., Lopedota A., Franco M., Cioffi N., Ieva E., Garcia-Fuentes M, Alonso MJ. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for oral delivery of small peptides, Eur. J. Pharm. Biopharm. 2010; 75: 26-32.

19

Hirsjärvi S., Qiao Y., Royere A., Bibette J., Benoit J.P., Layer-by-layer surface modification of lipid nanocapsules. Eur. J. Pharm. Biopharm. 2010; 76: 200-207.

20

Montenegro L., Trapani A., Latrofa A., Puglisi G., In vitro evaluation on a model of Blood Brain Barrier of Idebenone loaded solid lipid nanoparticles. J. Nanosci. Nanotechno. 2012; 12: 330-337.

21

Cometa S., Chiellini F., Bartolozzi I., Chiellini E., De Giglio E., Sabbatini L., Surface segregation assessment in poly(ε-caprolactone)-poly(ethylene glycol) multiblock copolymer films, Macromol. Biosci. 2010; 10: 317-327.

22

Chandran S., Shirwaikar C.A., Sarala A., Devi Kiron S.S., Development and evaluation of chitosan ocuserts containing ciprofloxacin and b-CD complex, Int. J. Pharm. Tech. Res. 2010; 246-252.

23

Blanchemain N., Karrout Y., Tabary N., Neut C., Bria M., Siepmann J., Hildebrand H.F., Martel B., Methyl-b-cyclodextrin modified vascular prosthesis: Influence of the modification level on the drug delivery properties in different media. Acta. Biomater. 2011; 7:304-314.

24

Peppas N.A., Analysis of fickian and non-fickian drug release from polymers, Int. J. Pharm. 1985; 15:25-35.

25

Rausch-Fanm X., Qu Z., Wieland M., Matejka M., Schedle A., Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG-63) in response to titanium surfaces, Dental. Mater. 2008; 24:102-110.

26

Mattioli-Belmonte M., Orciani M., Ferretti C., Orsini G., De Giglio E., Di Primio R., Cell behaviour on bioactive polymeric coatings, Ital. J. Anat. Embryol. 2010; 115(1/2): 127-133.

27

Martino A.D., Sittinger M., Risbud M.V., Chitosan: a versatile biopolymer for orthopedic tissue-engineering, Biomaterials. 2005; 26: 5983-5990.

28

Chaterji S., Gemeinhart R.A., Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric Scaffolds. J. Biomed. Mater Res. A 2007; 83: 990-998.

Nano Biomedicine and Engineering
Pages 163-169
Cite this article:
De Giglio E, Trapani A, Cafagna D, et al. Ciprofloxacin-loaded Chitosan Nanoparticles as Titanium Coatings: A Valuable Strategy to Prevent Implant-associated Infections. Nano Biomedicine and Engineering, 2012, 4(4): 163-169. https://doi.org/10.5101/nbe.v4i4.p163-169

348

Views

10

Downloads

16

Crossref

22

Scopus

Altmetrics

Published: 31 December 2012
© 2012 E.De Giglio et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return