AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Ceria nanoparticles boost activity of aged murine oocytes

NYa Spivak1EA Shepel2NM Zholobak1AB Shcherbakov1( )GV Antonovitch1RI Yanchiy2VK Ivanov3,4YuD Tretyakov3,4
Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Zabolotnogo str. 154, Kiev, D 03680, Ukraine
Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01024, Ukraine
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991, Russia
Department of Materials Science of Moscow State University, Lenin Hills, Moscow, 119991, Russia
Show Author Information

Abstract

Oocyte meiotic maturation and viability of follicular granulosa cells in young and old experimental Balb/C and CBA mice in the presence of ceria nanoparticles were studied. Treatment of old Balb/c mice with ceria nanoparticles for three days once a day (at a dose of 45 mg/kg) leads to a positive effect on reproductive system. The number of oocytes in follicles increases and this effect is accompanied by an increase in the number of oocytes at metaphase Ⅰ and metaphase Ⅱ. The number of living granulosa cells increases, while percentage of the necrotic and apoptotic ones decreases relative to control group. Data obtained on CBA mice provided additional evidence for positive effect of ceria nanoparticles. Depending on the initial state of the reproductive system and dose of ceria nanoparticles the effectiveness of the treatment will vary. In case of old mice ceria nanoparticles protect ovarian cells against oxidative damage, working as anti-aging agent. The litter size in old mice treated with the CNs increases too.

References

1

Jakupec M.A., Unfried P., Keppler B.K., Pharmacological properties of cerium compounds. Rev. Physiol. Biochem. Pharmacol. 2005;153:101-111.

2

Karakoti A.S., Monteiro-Riviere N.A., Aggarwal R., Davis J.P., Narayan R.J., Self W.T., Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM 2008;60(3):33.

3

Ivanov V.K., Shcherbakov A.B., Usatenko A.V., Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev. 2009;78(9):855-71.

4

Celardo I., Pedersen J.Z., Travers E., Ghibelli L., Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411-21.

5

Shcherbakov A.B., Ivanov V.K., Zholobak N.M., Ivanova O.S., Krysanov EIu, Baranchikov A.E., Nanocrystaline ceria based materials-perspectives for biomedical application. Biofizika. 2011;56(6):995-1015.

6

Zholobak N.M., Ivanov V.K., Shcherbakov A.B., Shaporev A., Polezhaeva O.S., Baranchikov A.Y., UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B. 2011;102:32-38.

7

Zholobak N., Shcherbakov A., Ivanov V., Olevinskaya Z., Spivak N., Antiviral effectivity of ceria colloid solutions. Antiviral Res. 2011; 90, 2:67.

8

Heckert E.G., Karakoti A.S., Seal S., Self W.T., The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29:2705-2709.

9

Schubert D., Dargusch R., Raitano J., Chan S.W., Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 2006; 342:86-91.

10
Hirst S.M., Karakoti A., Singh S., Self W., Tyler R., Seal S., Biodistribution and In Vivo Antioxidant Effects of Cerium Oxide Nanoparticles in Mice. Environmental Toxicology. Published online in Wiley Online Library.
11

Kregel K.C., Zhang H.J., An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations.Am J Physiol. Regul. Integr. Comp. Physiol. 2007;292(1):18-36.

12

Ivanov V.K., Polezhaeva O.S., Shaporev A.S., Baranchikov A.E., Shcherbakov A.B., Usatenko A.V., Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acid. Russ. J. Inorg. Chem. 2010;55(3):328-332.

13

Shimizu S., Eguchi Y., Kamiike W., Akao Y., Kosaka H., Hasegawa J., Involvement of ICE family proteases in apoptosis induced by reoxygenation of hypoxic hepatocytes. Am. J. Physiol. 1996;271:949-958.

14

Ciancio G., Pollack A., Taupier M.A., Block N.L., Irvin G.L, Measurement of cell-cycle phasespecific cell death using Hoechst 33342 and propidium iodide: preservation by ethanol fixation. J. Histochem. Cytochem. 1988;36(9):1147-1152.

15

Agarwal A., Saleh R.A., Bedaiwy M.A., Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003;79(4):829-843.

16

Agarwal A., Gupta S., Sharma R.K., Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005;3:28

17

Behrman H.R., Kodaman P.H., Preston S.L., Gao S., Oxidative stress and the ovary. J. Soc. Gynecol. Investig. 2001;8:40-42.

18

Sabatini L., Wilson C., Lower A., Al-Shawaf T., Grudzinskas J.G., Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil. Steril. 1999;72:1027-1034.

19

Ishikawa M., Oxygen radicals-superoxide dismutase system and reproduction medicine. Nippon Sanka Fujinka Gakkai Zasshi. 1993;45:842-848.

20

Martín-Romero F.J., Miguel-Lasobras E.M., Domínguez-Arroyo J.A., González-Carrera E., Alvarez I.S., Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online. 2008;17(5):652-61.

21

Ménézo Y., Guérin P., Gamete and embryo protection against oxidative stress during medically assisted reproduction. Bull. Acad. Natl. Med. 2005;189(4):715-26.

22

Lu C., Koppenol W.H., Inhibition of the Fenton reaction by nitrogen monoxide. J. Biol. Inorg. Chem. 2005; 10:732-738.

23

Voznesenska T.Yu, Blashkiv T.V., Shepel O.A., Yanchiy R.I., Experimental aspects of disturbances of reproductive function. Kyiv: Milanik. 2010, 184

24

Shkolnik K., Tadmor A., Ben-Dor S., Nevo N., Galiani D., Dekel N., Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. USA. 2011;108(4):1462-1467.

25

Eppig J.J., Role of serum in FSH stimulated cumulus expansion by mouse oocyte-cumulus cell complexes in vitro. Biol. Reprod. 1980;22(3):629-633.

26

Ma S., Lin H., Miao Y., Liu X., Wang B., Dai J., The effect of three-dimensional demineralized bone matrix on in vitro cumulus-free oocyte maturation. Biomat. 2007;28:3198-3207.

27

Voznesenskaia TIu, Blashkiv T.V., Portnichenko A.G., Effect of cumulus and granulosa cells on meiosis resumption in murine oocytes in vitro. Tsitologiia. 2001;43(3):250-253.

28

Dell'Aquila M.E., Caillaud M., Maritato F., Martoriati A., Gérard N., Aiudi G., Cumulus expansion, nuclear maturation and connexin, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis. Reprod. Biol. Endocrinol. 2004;22:44.

29

Marchal R., Caillaud M., Martoriati A., Gerard N., Mermillod P., Goudet G., Effect of growth hormone (GH) on in vitro nuclear and cytoplasmic oocyte maturation, cumulus expansion, hyaluronan synthases, and connexins and expression, and GH receptor messenger RNA expression in equine and porcine species. Biol. Reprod. 2003;69:1013-1022.

30

Ka H.H., Sawai K., Wang W.H., Im K.S., Niwa K., Amino acids in maturation medium and presence of cumulus cells at fertilization promote male pronuclear formation in porcine oocytes matured and penetrated in vitro. Biol. Reprod. 1997;57:1478-1483.

31

Yamauchi N., Nagai T., Male pronuclear formation in denuded porcine oocytes after in vitro maturation in the presence of cysteamine. Biol. Reprod. 1999;61:823-833.

32

Marchal R., Tomanek M., Terqui M., Mermillod P., Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Mol. Reprod. Dev. 2001;60:65-73.

33

Tatemoto H., Muto N., Sunagawa I., Shinjo A., Nakada T., Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol. Reprod. 2004;71(4):1150-1157.

34

Niwa K., Effectiveness of in vitro maturation and in vitro fertilization techniques in pig.J. Reprod. Fertil. 1993;48:49-59.

35

Ruder E.H., Hartman T.J., Blumberg J., Goldman M.B., Oxidative stress and antioxidants: exposure and impact on female fertility. Hum. Reprod. Update. 2008;14:345-37.

36

Sekhon L.H., Gupta S., Kim Y., Agarwal A., Female Infertility and Antioxidants. Curr. Womens Health Rev. 2010;6: 84-95.

37

Tantone C., Oocyte senescence: A firm link to age-related female. Gynecol. Endocrinol. 2008;24(2):59-63.

38

Su Y.Q., Sugiura K., Woo Y., Wigglesworth K., Kamdar S., Affourtit J., Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev. Biol. 2007;302(1): 104-117.

Nano Biomedicine and Engineering
Pages 188-194
Cite this article:
Spivak N, Shepel E, Zholobak N, et al. Ceria nanoparticles boost activity of aged murine oocytes. Nano Biomedicine and Engineering, 2012, 4(4): 188-194. https://doi.org/10.5101/nbe.v4i4.p188-194

389

Views

6

Downloads

7

Crossref

18

Scopus

Altmetrics

Published: 31 December 2012
© 2012 NYa Spivak et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return