AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Superoxide Dismutase, A Potential Theranostics Against Oxidative Stress Caused by Nanomaterials

Chao LiDaxiang Cui( )
Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Micro fabrication Technology of Ministry of Education, National Key Laboratory of Micro/Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
Show Author Information

Abstract

Nanomaterials can result in oxidative stress damage, how to prevent oxidative stress caused by nanomaterialshave become our concerns. Superoxide dismutase (SOD) performs some special functions inside the living cells such as combating with the reactive oxygen species (ROS), interfering with the injured made by the hydrogen peroxide (H2O2), and repairing the damage induced by these ROS, exhibiting great application prospects in clinical therapy. Herein we review the main advances of SOD and its high efficient delivery systems, and explore the issue, challenges, and prospects with the aim of developing novel nanoscaletheranostics against oxidative stress-induced damages caused nanomaterials.

References

1

Borm P.J., Robbins D., Haubold S., Kuhlbusch T., Fissan H., Donaldson K. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol, 2006; 3: 1-35.

2

Keilin T.M.D. Haemocuprein and hepatocuperin, copper-protein compounds of blood and liver in mamals. Series B. Biolog. Sci., 1938; 126(9): 303-315.

3

Hartree D.K.E.F. Cytochrome oxidase and the 'Pasteur enzyme'. Nature, 1953; 171: 413-416.

4

McCord J.M., Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J. Biol. Chem. 1968; 243: 5753-5760.

5

Shimoda-matsubayashi S., Matsumine H., Kobayashi T., Nakagawahattori Y., Shimizu Y., Mizuno Y. Structural Dimorphism in the Mitochondrial Targeting Sequence in the Human Manganese Superoxide Dismutase Gene. Biochem. Biophys. Res. Commun. 1996; 226: 561-565.

6

Youn H.D., Kim E.J., Roe J.H., Hah Y.C., Kang S.O. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 1996; 318: 889-896.

7

Cocco D., Calabrese L., Rigo A., Marmocchi F., Rotilio G., Biologica C. Preparation of selectively metal-free and metal-substituted derivatives by reaction of Cu-Zn superoxide dismutase with diethyldithiocarbamate. Biochem. J. 1981; 199: 675-680.

8

Lamb A.L., Torres A.S., Halloran T.V.O., Rosenzweig A.C. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Biol., 2001; 8:751-755.

9

Banci L., Benedetto M., Bertini I., Del Conte R., Piccioli M., Viezzoli M.S. Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme? Biochemistry, 1998; 37:11780-11791.

10

ZELKO I.N., MARIANI T.J., FOLZ R.J. Superoxide dismutase multigene family: A comparison of the CuZnSOD (SOD1), MnSOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 2002; 33:337-349.

11

Hough M., Hasnain S.S. Crystallographic structures of bovine copper-Zn superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper site captured in the same crystal. J. Mol. Biol., 1999; 287:579-592.

12

Hough M., Hasnain S.S. Structure of Fully Reduced Bovine Copper Zinc Superoxide Dismutase at 1.15 Å. Structure, 2003; 11:937-946.

13

Fink R.C., Scandalios J.G. Molecular evolution and structure--function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch. Biochem. Biophys., 2002; 399:19-36.

14

Borgstahl G.E.O, Parge H.E., Hickey M.J., Beyer W.F., Hallewell R.A., Tainer J.A. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell, 1992; 71:107-118.

15

Edwards R.A., Baker H.M., Whittaker M.M., Whittaker J.W., Jameson G.B., Baker E.N. Crystal structure of Escherichia coli manganese superoxide dismutase at 2.1-Å resolution. J Biol Inorg Chem. 1998; 3: 161-171.

16

Carlioz A., Ludwig M.L., Stallings W.C., Fee J., Steinman H.M., Touati D. Iron superoxide dismutase. Nucleotide sequence of the gene from Escherichia coli K12 and correlations with crystal structures. J. Biol. Chem. 1988; 263:1555-1562.

17

Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., König H. Aquifex pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine Hyperthermophilic Hydrogen-Oxidizing Bacteria. Syst. Appl. Microbiol., 1992; 15:340-351.

18

Lim J.H., Yu Y.G., Choi I.G., Ryu J.R., Ahn B.Y., Kim S.H. Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium. Febs. Lett., 1997; 406:142-146.

19

Lim J.H., Yu Y.G., Han Y.S., Cho S., Ahn B.Y., Kim S.H.. The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. J. Mol. Biol., 1997; 270:259-274.

20

Patel L.N., Zaro J.L., Shen W.C. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharmaceut. Res., 2007; 24:1977-1992.

21

Gu Z., Biswas A., Zhao M., Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev., 2011; 40:3638-55.

22

Petri W. Protein transduction domains: are they delivering? Trends Pharmacol. Sci., 2003; 24:210-212.

23

Gao J., Xu B. Applications of nanomaterials inside cells. Nano Today, 2009; 4:37-51.

24

Lee K.Y., Yuk S.H. Polymeric protein delivery systems. Prog. Polym. Sci., 2007; 32:669-697.

25

Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2007; 2:751-760.

26

Chou L.Y.T., Ming K., Chan W.C.W. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev., 2011; 40:233-245.

27

Wang J., Hu T., Liu Y., Zhang G., Ma G., Su Z. Kinetic and stoichiometric analysis of the modification process for N-terminal PEGylation of staphylokinase. Anal. Biochem., 2011; 412:114-116.

28

Solaro R. Targeted delivery of proteins by nanosized carriers. J. Polym. Sci., Part A: Polym. Chem. 2008; 46:1-11.

29

Liguori L., Marques B., Villegas-Mendez A., Rothe R., Lenormand J.L. Liposomes-mediated delivery of pro-apoptotic therapeutic membrane proteins. J. Controlled Release, 2008; 126:217-227.

30

Rosenbaugh E.G., Roat J., Gao L., Yang R.F., Manickam D.S., Yin J.X. The Attenuation of Central Angiotensin Ⅱ-dependent Pressor Response and Intra-neuronal Signaling by Intracarotid Injection of Nanoformulated Copper/Zinc Superoxide Dismutase. Biomaterials, 2011; 31:5218-5226.

31

Du J., Yu C., Pan D., Li J., Chen W., Yan M. Quantum-dot-decorated robust transductable bioluminescent nanocapsules. J. Am. Chem. Soc., 2010; 132:12780-12781.

32

Gao J., Gu H., Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts. Chem. Res., 2009; 42:1097-1107.

33

Michael C., Elizabeth H., Levy R.J., Muzykantov. Endothelial delivery of antioxidant enzymes loaded into nonpolymeric magnetic nanoparticles. Biochemistry, 2010; 29:8885-8893.

34

Yan M., Du J., Gu Z., Liang M., Hu Y., Zhang W. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nature nanotech. 2010; 5:48-53.

35

Biswas A., Joo K.I., Liu J., Zhao M., Fan G., Wang P. Endoproteasemediated intracellular protein delivery using nanocapsules. ACS nano, 2011; 5:1385-1394.

36

Nagami H., Yoshimoto N., Umakoshi H., Shimanouchi T., Kuboi R. Liposome-assisted activity of superoxide dismutase under oxidative stress. J. Biosci. Bioeng., 2005; 99:423-428.

37

Freeman B., Young S.L., Crapo J.D. Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. J. Biol. Chem. 1983; 258:12534-12542.

38

Gaspar M.M., Martins M.B., Corvo M.L., Cruz M.E.M. Design and characterization of enzymosomes with surface-exposed super-oxide dismutase. Biochim. Biophys. Acta, 2003; 1609:211-217.

39

Gaspar M.M., Boerman O.C., Laverman P., Corvo M.L., Storm G., Cruz M.E.M. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J. controlled release, 2007; 117:186-195.

40

Batrakova E.V., Li S., Reynolds A.D., Mosley R.L., Tatiana K., Kabanov A.V. A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjugate Chem., 2009; 18:1498-1506.

41

Yi X, Zimmerman M.C., Yang R.F., Tong J., Vinogradov S.V., Kabanov A.V. Pluronic-Modified Superoxide Dismutase 1 (SOD1) Attenuates Angiotensin Ⅱ-Induced Increase in Intracellular Superoxide in Neurons. Free. Radical. Biol. Med., 2010; 49:2-2.

42

Leonarduzzi G., Testa G., Sottero B., Gamba P., Poli G. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr. Med. Chem., 2010; 17:74-95.

43

Kumar V., Hong S.Y., Maciag A.E., Saavedra J.E., Douglas H., Prud R.K. Stabilization of the nitric oxide (NO) prodrugs and anticancer leads, PABA/NO and double JS-K, through incorporation into PEG-protected nanoparticles. Mol. Pharm., 2011; 7:291-313.

44

Wattamwar P.P., Mo Y., Wan R., Palli R., Zhang Q., Dziubla T.D. Antioxidant Activity of Degradable Polymer Poly(trolox ester) to Suppress Oxidative Stress Injury in the Cells. Adv. Funct. Mater., 2010; 20:147-154.

45

Giovagnoli S., Luca G., Casaburi I., Blasi P., Macchiarulo G., Ricci M. Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres: in vitro effects on isolated neonatal porcine pancreatic cell clusters. J. controlled release, 2005; 107:65-77.

46

Fiore V.F., Lofton M.C., Roser-Page S., Yang S.C., Roman J., Murthy N. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials, 2010; 31:810-817.

47

Kim E., Kim D., Jung H., Lee J., Paul S., Selvapalam N. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angew. Chem. Int. Ed., 2010; 49: 4405-4408.

48

Saad M., Garbuzenko O.B., Ber E., Chandna P., Khandare J.J., Pozharov V.P. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J. Controlled Release, 2008; 130:107-114.

49

Dziubla T.D., Karim A., Muzykantov V.R. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J. Controlled Release, 2005; 102:427-439.

50

Champion J.A., Mitragotri S. Role of target geometry in phagocytosis. PNAS, 2006; 103:4930-4934.

51

Muro S., Garnacho C., Champion J.A., Leferovich J., Schuchman E.H., Mitragotri S. Control of Endothelial Targeting and Intracellular Delivery of Therapeutic Enzymes by Modulating the Size and Shape of ICAM-1-targeted Carriers. Mol. Ther., 2008; 16:1450-1458.

52

Xu S., Nie Z., Seo M., Lewis P., Kumacheva E., Stone H. Generation of monodisperse particles by using microfluidics: control over size, shape and composition. Angew. Chemie. Int. Ed., 2005; 44:724-728.

53

Discher D.E., Eisenberg A. Polymer vesicles. Science, 2002; 297:967-973.

54

Dalhaimer P., Bates F.S., Discher D.E. Single Molecule Visualization of Stable, Stiffness-Tunable, Flow-Conforming Worm Micelles. Macromolecules, 2003; 36:6873-6877.

55

Simone E.A., Dziubla T.D., Colon-gonzalez F., Discher D.E., Muzykantov V.R. Effect of Polymer Amphiphilicity on Loading of a Therapeutic Nanocarriers. Biomacromol., 2007; 8:3914-3921.

56

Geng Y., Dalhaimer P., Cai S., Tsai R., Tewari M., Minko T. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature nanotech. 2007; 2:249-255.

57

Reddy M.K., Wu L., Kou W., Ghorpade A., Labhasetwar V. Superoxide Dismutase-Loaded PLGA Nanoparticles Protect Cultured Human Neuron sUnder Oxidative Stress. Appl. Biochem. Biotech., 2008; 29:565-577.

58

Muro S., Dziubla T., Qiu W., Leferovich J., Cui X., Berk E. Endothelial Targeting of High-Affinity Multivalent Polymer Nanocarriers Directed to Intercellular Adhesion Molecule 1. Pharmacology, 2006; 317:1161-1169.

59

Dziubla T.D., Shuvaev V.V., Hong N.K., Hawkins B., Takano H., Simone E. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials, 2009; 29:215-227.

60

Tabata Y., Gutta S., Langer R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharmaceut. Res., 1993; 10:487-496.

61

Siepmann J. Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Delivery Rev., 2001; 48:229-247.

62

Pfeifer B., Burdick J., Langer R. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres. Biomaterials, 2005; 26:117-124.

63

Schliecker G., Schmidt C., Fuchs S., Kissel T. Characterization of a homologous series of d, l-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials, 2003; 24: 3835-3844.

64

Shive M., Anderson J. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Delivery Rev., 1997; 28:5-24.

65

Ahmed F., Discher D.E. Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J. controlled release, 2004; 96:37-53.

66

Geng Y., Discher D.E. Hydrolytic degradation of poly (ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc., 2005; 127:12780-12781.

67

Shih C. A graphical method for the determination of the mode of hydrolysis of biodegradable polymers. Pharmaceut. Res., 1995; 12:2036-2040.

68

Ahmed F., Pakunlu R.I., Srinivas G., Brannan A., Bates F., Klein M.L. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharm., 2006; 3:340-350.

69

Muzykantov V.R., Atochina E.N., Ischiropoulos H., Danilovt S.M., Fisher A.B. Immunotargeting of antioxidant enzymes to the pulmonary endothelium. PNAS, 1996; 93:5213-5218.

70

Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996; 17:103-114.

71

Palm T., Esfandiary R., Gandhi R. The effect of PEGylation on the stability of small therapeutic proteins. Pharm. Dev. Technol., 2011; 16:441-448.

72

Stuart M.C., Huck W.T.S., Genzer J., Müller M., Ober C., Stamm M. Emerging applications of stimuli-responsive polymer materials. Nature Mater., 2010; 9:101-113.

73

Adiseshaiah P.P., Hall J.B., McNeil S.E. Nanomaterial standards for efficacy and toxicity assessment. WIRES Nanomed. Nanobi., 2009; 2:99-512.

Nano Biomedicine and Engineering
Pages 195-206
Cite this article:
Li C, Cui D. Superoxide Dismutase, A Potential Theranostics Against Oxidative Stress Caused by Nanomaterials. Nano Biomedicine and Engineering, 2012, 4(4): 195-206. https://doi.org/10.5101/nbe.v4i4.p195-206

234

Views

3

Downloads

0

Crossref

0

Scopus

Altmetrics

Published: 31 December 2012
© 2012 C. Li et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return