AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (900.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Nanoparticle-based Optical Detection of MicroRNA

Jingpu ZhangDaxiang Cui( )
Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Micro fabrication Technology of Ministry of Education, National Key Laboratory of Micro /Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
Show Author Information

Abstract

MiRNAs are valuable biomarkers for diagnosis and prognosis of cancers, so it is imperative to develop rapid, sensitive, high throughput miRNA detection methods. In this review article, the current nanoparticle-based miRNA detection by optical technology was summarized from the following aspects about fluorescence, scattering and colorimetry. And the emphasis is laid on employing quantum dots (QDs) and silver nanoclusters (AgNCs)- based fluorescence and silver nanorod-based surface enhanced Raman scattering (SERS) to detect miRNAs. Nanoparticle-based optical detection is prospective for multiplexed miRNA detection or in vivo imaging.

References

[1]

Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2):281-297.

[2]

Meyer S.U., Pfaffl M.W., Ulbrich S.E. Normalization strategies for microRNA profiling experiments: a 'normal' way to a hidden layer of complexity? Biotechnol. Lett., 2010. 32(12):1777-1788.

[3]

Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006. 6(11):857-866.

[4]

Iorio M.V., Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics, a comprehensive review. Embo Mol. Med., 2012. 4(3):143-159.

[5]

Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D. MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043):834-838.

[6]

Kim D.N., Chae H.S., Oh S.T., Kang J.H., Park C.H., Park W.S. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J. Virol., 2007. 81(2):1033-1036.

[7]

Zhou H., Guo J.M., Lou Y.R., Zhang X.J., Zhong F.D., Jiang Z. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J. Mol. Med.-JMM, 2010. 88(7):709-717.

[8]

Wu W.K.K., Lee C.W., Cho C.H., Fan D., Wu K., Yu J. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene, 2010. 29(43):5761-5771.

[9]

Mitchell. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A., 2008. 105(30): 10513-10516.

[10]

Kosaka N., Iguchi H., Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci., 2010. 101(10):2087-2092.

[11]

Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008. 18(10):997-1006.

[12]

Hunt E.A., Goulding A.M., Deo S.K. Direct detection and quantification of microRNAs. Anal. Biochem., 2009. 387(1):1-12.

[13]

Dijkstra J.R., Mekenkamp L.J.M., Teerenstra S., De Krijger I., Nagtegaal I.D. MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls. J. Cell. Mol. Med., 2012. 16(4):683-690.

[14]

Koshiol J., Wang E., Zhao Y., Marincola F., Landi M.T. Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidem. Biomar., 2010. 19(4):907-911.

[15]

Liu H.S., Zhu L., Liu B.Y., Yang L., Meng X.X., Zhang W. Genome wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett., 2012. 316(2): 196-203.

[16]

Liu R., Zhang C.N., Hu Z.B., Li G., Wang C., Yang C.H. A five-microRNA signature identified from genome wide serum miRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur. J. Cancer, 2011. 47(5):784-791.

[17]

Zhang G.J., Chua J.H., Chee R.E., Agarwal A., Wong S.M. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron., 2009. 24(8):2504-2508.

[18]

Yin H., Zhou Y., Zhang H., Meng X., Ai S. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens. Bioelectron., 2012. 33(1):247-253.

[19]

Husale S., Persson H.H.J., Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature, 2009. 462(7276):1075-1078.

[20]

Wang L., Cheng Y., Wang H., Li Z. A homogeneous fluorescence sensing platform with water-soluble carbon nanoparticles for detection of microRNA and nuclease activity. Analyst, 2012. 137(16):3667-3672.

[21]

Gu L.Q., Wanunu M., Wang M.X., McReynolds L., Wang Y. Detection of miRNAs with a nanopore single-molecule counter. Expert Rev. Mol. Diagn., 2012. 12(6):573-584.

[22]

Fan Y., Chen X., Trigg A.D., Tung C.H., Kong J., Gao Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc., 2007. 129(17): 5437-5443.

[23]

Liang R.Q., Li W., Li Y., Tan C.Y., Li J.X., Jin Y.X. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res., 2005. 33(2).

[24]

Wark A.W., Lee H.J., Corn R.M. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew. Chem. Int. Ed., 2008. 47(4):644-652.

[25]

Benes V., Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 2010. 50(4):244-249.

[26]

Stenvang J., Silahtaroglu A.N., Lindow M., Elmen J., Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin. Cancer Biol., 2008. 18(2):89-102.

[27]

Kore A.R., Hodeib M., Hu Z. Chemical synthesis of LNA-mCTP and its application for microRNA detection. Nucleos. Nucleot. Nucl., 2008. 27(1):1-17.

[28]

Fabani M.M., Abreu-Goodger C., Williams D., Lyons P.A., Torres A.G., Smith K.G.C. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res., 2010. 38(13):4466-4475.

[29]

Kim H., Choi J.J., Cho M., Park H. A PNA microarray platform for miRNA expression profiling using on-chip labeling technology. Biochip J., 2012. 6(1):25-33.

[30]

Fabani M.M., Gait M.J. miR-122 targeting with LNA/2 '-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA-Publ. RNA Soc., 2008. 14(2):336-346.

[31]

Cissell K.A., Deo S.K. Trends in microRNA detection. Anal. Bioanal. Chem., 2009. 394(4):1109-1116.

[32]

Lodes M.J., Caraballo M., Suciu D., Munro S., Kumar A., Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One, 2009. 4(7).

[33]

Matveeva E.G., Gryczynski Z., Stewart D.R., Gryczynski I. Ratiometric FRET-based detection of DNA and micro-RNA on the surface using TIRF detection. J. Lumin., 2010. 130(4):698-702.

[34]

Dodgson B.J., Mazouchi A., Wegman D.W., Gradinaru C.C., Krylov S.N. Detection of a thousand copies of miRNA without enrichment or modification. Anal. Chem., 2012. 84(13):5470-5474.

[35]

Jiang L., Duan D., Shen Y., Li J. Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens. Bioelectron., 2012. 34(1):291-295.

[36]

Neely L.A., Patel S., Garver J., Gallo M., Hackett M., McLaughlin S. A single-molecule method for the quantitation of microRNA gene expression. Nat. Methods, 2006. 3(1):41-46.

[37]

Cissell K.A., Hunt E.A., Deo S.K. Resonance energy transfer methods of RNA detection. Anal. Bioanal. Chem., 2009. 393(1):125-135.

[38]

Bi S., Zhang J., Hao S., Ding C., Zhang S. Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network. Anal. Chem., 2011. 83(10):3696-3702.

[39]

Broyles D., Cissell K., Kumar M., Deo S. Solution-phase detection of dual microRNA biomarkers in serum. Anal. Bioanal. Chem., 2012. 402(1):543-550.

[40]

Thomson J.M., Parker J., Perou C.M., Hammond S.M. A custom microarray platform for analysis of microRNA gene expression. Nat. Methods, 2004. 1(1):47-53.

[41]

Cissell K.A., Rahimi Y., Shrestha S., Hunt E.A., Deo S.K. Bioluminescence-based detection of MicroRNA, miR21 in breast cancer cells. Anal. Chem., 2008. 80(7):2319-2325.

[42]

Song W., Qiu X., Lau C., Lu J. Quantum dot-enhanced detection of dual short RNA sequences via one-step template-dependent surface hybridization. Anal. Chim. Acta, 2012. 735:114-120.

[43]

Zhang J., Fu Y., Mei Y.P., Jiang F., Lakowicz J.R. Fluorescent metal nanoshell probe to detect single mi RNA in lung cancer cell. Anal. Chem., 2010. 82(11):4464-4471.

[44]

Do Won H., In Chan S., Dong Soo L., Soonhag K. Smart Magnetic Fluorescent Nanoparticle Imaging Probes to Monitor MicroRNAs. Small, 2010. 6(1):81-8.

[45]

Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005. 4(6):435-446.

[46]

Huang X., Ren J. Nanomaterial-based chemiluminescence resonance energy transfer: A strategy to develop new analytical methods. Trac-Trend. Anal. Chem., 2012. 40:77-89.

[47]

Zhang Y., Zhang C.Y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal. Chem., 2012. 84(1):224-231.

[48]

Cissell K.A., Campbell S., Deo S.K. Rapid, single-step nucleic acid detection. Anal. Bioanal. Chem., 2008. 391(7):2577-2581.

[49]

Petty J.T., Zheng J., Hud N.V., Dickson R.M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc., 2004. 126(16):5207-5212.

[50]

Richards C.I., Choi S., Hsiang J.C., Antoku Y., Vosch T., Bongiorno A. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc., 2008. 130(15):5038-5039.

[51]

Patel S.A., Richards C.I., Hsiang J.C., Dickson R.M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J. Am. Chem. Soc., 2008. 130(35):11602-11603.

[52]

Zhou Z., Du Y., Dong S. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Biosens. Bioelectron., 2011. 28(1):33-37.

[53]

Shah P., Rorvig-Lund A., Ben Chaabane S., Thulstrup P.W., Kjaergaard H.G., Fron E. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano, 2012. 6(10):8803-8814.

[54]

Yang S.W., Vosch T. Rapid detection of microRNA by a silver nanocluster DNA probe. Anal. Chem., 2011. 83(18):6935-6939.

[55]

Li J., Schachermeyer S., Wang Y., Yin Y., Zhong W. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals. Anal. Chem., 2009. 81(23):9723-9729.

[56]

Kim J.K., Choi K.J., Lee M., Jo M.H., Kim S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials, 2012. 33(1):207-217.

[57]

Muniz-Miranda M., Gellini C., Pagliai M., Innocenti M., Salvi P.R., Schettino V. SERS and computational studies on microRNA chains adsorbed on silver surfaces. J. Phys. Chem. C, 2010. 114(32):13730-13735.

[58]
Wang Z., Yang B. MicroRNA Expression Detection Methods. Surface-enhanced Raman spectroscopy method, 2010, Canada: Springer-Verlag. 275-280.
[59]

Driskell J.D., Seto A.G., Jones L.P., Jokela S., Dluhy R.A., Zhao Y.P. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens. Bioelectron., 2008. 24(4):917-922.

[60]
Zhao Y.P., Liu Y.J. The Silver Nanorod Array SERS Substrates. AIP Conference Proceedings, 2010. 1267: 277-8.
[61]

Driskell J.D., Tripp R.A. Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem. Commun., 2010. 46(19):3298-3300.

[62]

Wang H.N., Vo-Dinh T. Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection. Small, 2011. 7(21): 3067-3074.

[63]

Xu F.G., Dong C.Q., Xie C., Ren J.C. Ultrahighly sensitive homogeneous detection of DNA and microRNA by using single-silver-nanoparticle counting. Chem.Eur. J., 2010. 16(3):1010-1016.

[64]

Alhasan A.H., Kim D.Y., Daniel W.L., Watson E., Meeks J.J., Thaxton C.S. Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nano-particle conjugates. Anal. Chem., 2012. 84(9):4153-4160.

[65]

Yang W.J., Li X.B., Li Y.Y., Zhao L.F., He W.L., Gao Y.Q. Quantification of microRNA by gold nanoparticle probes. Anal. Biochem., 2008. 376(2):183-188.

[66]
Wang Z., Yang B. MicroRNA Expression Detection Methods. Gold nanoparticle probe method for miRNA quantification, 2010, Canada: Springer-Verlag. 217-225.
[67]

Zhou W.J., Chen Y.L., Corn R.M. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nano-particles and surface plasmon resonance imaging measurements. Anal. Chem., 2011. 83(10):3897-3902.

Nano Biomedicine and Engineering
Pages 1-10
Cite this article:
Zhang J, Cui D. Nanoparticle-based Optical Detection of MicroRNA. Nano Biomedicine and Engineering, 2013, 5(1): 1-10. https://doi.org/10.5101/nbe.v5i1.p1-10

261

Views

8

Downloads

9

Crossref

14

Scopus

Altmetrics

Published: 30 March 2013
© 2013 J.P. Zhang and D.X. Cui.

This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return