AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
View | Open Access

Recent Progress in Metal Oxide Based Materials as Anode Materials for LithiumIon Batteries

Lili Feng1,2( )Changwei Su1,2Zhewen Xuan1,2Junming Guo1,2Yingjie Zhang1,2
Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan University of Nationalities
Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, School of Chemistry and Biotechnology, Yunnan University of Nationalities, Kunming, China 650500
Show Author Information

Abstract

Transition metal oxides are promising anode materials for Li-ion batteries due to their high theoretical capacity (> 600 mAhg-1), good rate capability, good safety, environmental friendliness and relatively low cost. In recent years, more and more investigators are motivating this advanced material rapidly towards their hybrid materials preparation to improve the cycling performance. Herein, we outlined the current research advances of transition metal oxides and their hybrid materials as anode materials for Li-ion batteries in the synthesis, lithium storage mechanism and electrochemical performance, with the aim of stimulating more research to achieve more useful application as soon as possible.

References

[1]

Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.

[2]

Wu Y., Wan, C., Jiang c., Lithium-ion secondary battery. Chemical Industry Press 2002.

[3]

Wu Y., Dai X., Ma J., Cheng Y. Lithium-ion batteryApplications and Practice. Chemical Industry Press 2004.

[4]

Reeves S. D., Morris R. S. Improved MCMB anodes by surface modification with self-assembling nonionic surfactants. Electrochem. Solid St. Chem. 2004, 7 (8), B29-B30.

[5]

Mochida I., Ku C. H., Korai Y. Anodic performance and insertion mechanism of hard carbon prepared from synthetic isotropic pitches. Carbon 2001, 39 (3), 399-410.

[6]

EunJoo Y., Kim J., Hosono E., Hao-shen Z., Kudo T., Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8 (8), 2277.

[7]

Wang F., Zhao, M.; Song, X., Nano-sized SnSbCux alloy anodes prepared by co-precipitation for Li-ion batteries. J. Power Sources 2008, 175 (1), 558-563.

[8]

Yu Y., Chen, C.H., Shi, Y. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007, 19 (7), 993-998

[9]

Min Gyu, K.; Jaephil, C., Nanocomposite of amorphous Ge and Sn nanoparticles as an anode material for Li secondary battery. J. Electrochem. Soc. 2009, 156 (4), A277-82.

[10]

Hu Y.S., Demir-Cakan R., Titirici M.-M., Mueller J. O., Schloegl R., Antonietti M., Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2008, 47 (9), 1645-1649.

[11]

Cui L.F., Ruffo R., Chan C.K., Peng H., Cui Y. Crystalline- amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9 (1), 491-495.

[12]

Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.M. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803), 496-499.

[13]

Wang P.C., Ding H.P., Bark T., Chen C.H. Nanosized alpha- Fe2O3 and Li-Fe composite oxide electrodes for lithium-ion batteries. Electrochim. Acta 2007, 52 (24), 6650-6655.

[14]

Zhang D.W., Yi T.H., Chen C.H. Cu nanoparticles derived from CuO electrodes in lithium cells. Nanotechnology 2005, 16 (10), 2338-2341

[15]

Chen J., Xu L.N., Li W.Y., Gou X.L. alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17 (5), 582-587.

[16]

Zhao Q., Xie Y., Dong T., Zhang Z. Oxidation-crystallization process of colloids: An effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. J. Phys. Chem. C 2007, 111 (31), 11598-11603.

[17]

Yingying H., Xintang H., Kai W., Jinping L., Jian J., Ruimin D., Xiaoxu J., Xin L. Kirkendall-effect-based growth of dendrite- shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J. Solid St. Chem. 183 (3), 662-7.

[18]

Park M.S., Wang G.X., Kang Y.M., Wexler D., Dou S.X., Liu H.K., Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 2007, 46 (5), 750-753.

[19]

Wang C., Zhou Y., Ge M., Xu X., Zhang Z., Jiang J.Z. Large-scale synthesis of SnO2 nanosheets with high Lithium storage capacity. J. Am. Chem. Soc. 132 (1), 46-49.

[20]

Xiang J.Y., Tu J.P., Zhang L., Zhou Y., Wang X.L., Shi S.J. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources 195 (1), 313-319.

[21]

Grugeon S., Laruelle S., Herrera-Urbina R., Dupont L., Poizot P., Tarascon J.M. Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 2001, 148 (4), A285-A292.

[22]

Debart A., Dupont L., Poizot P., Leriche J.B., Tarascon J.M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148 (11), A1266-A1274

[23]

Reddy M.V., Yu T., Sow C.H., Shen Z.X., Lim C.T., Rao G.V.S., Chowdari B.V.R. alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17 (15), 2792-2799.

[24]

Wu C., Yin P., Zhu X., OuYang C., Xie Y. Synthesis of hematite (alpha-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 2006, 110 (36), 17806-17812.

[25]

Sangjin H., Byungchul J., Taeahn K., Oh S. M., Taeghwan H. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 2005, 15 (11), 1845-50.

[26]

Mei W., Dalai J., Ran F., Limin S., Mingxia G., Linhai Y. Pillow-shaped porous CuO as anode material for lithium-ion batteries. Inorg. Chem. Commun. 14 (1), 38-41.

[27]

Zhang L., Wu H.B., Madhavi S., Hng H.H., Lou X.W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-Organic frameworks and their Lithium storage property. J. Am. Chem. Soc. 134 (42), 17388-17391.

[28]

Zhang W.M., Wu X.L., Hu J.S., Guo Y.G., Wan L.J. Carbon Coated Fe3O4 nanospindles as a superior anode material for Lithium-Ion batteries. Adv. Funct. Mater. 2008, 18 (24), 3941-3946.

[29]

Sun X., Liu J., Li Y. Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater. 2006, 18 (15), 3486-3494.

[30]

Wang H., Cui L.F., Yang Y., Casalongue H.S., Robinson J. T., Liang Y., Cui Y., Dai H. Mn3O4-graphene hybrid as a high-capacity anode naterial for Lithium-ion batteries. J. Am. Chem. Soc. 132 (40), 13978-13980.

[31]

Zhang L.S., Jiang L.Y., Yan H.J., Wang W.D., Wang W., Song W.G., Guo Y.G., Wan L.J. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J. Mater. Chem. 20 (26), 5462-5467.

[32]

Su Y., Li S., Wu D., Zhang F., Liang H., Gao P., Cheng C., Feng X. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced Lithium storage. Acs Nano 6 (9), 8349-8356.

Nano Biomedicine and Engineering
Pages 57-64
Cite this article:
Feng L, Su C, Xuan Z, et al. Recent Progress in Metal Oxide Based Materials as Anode Materials for LithiumIon Batteries. Nano Biomedicine and Engineering, 2013, 5(1): 57-64. https://doi.org/10.5101/nbe.v5i1.p57-64

347

Views

12

Downloads

4

Crossref

0

Scopus

Altmetrics

Published: 30 March 2013
© 2013 L.L. Feng et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return