AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances of Upconversion Nanoparticles for Molecular Imaging

Na ZhouJian NiRong He( )
Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders of Ministry of Education, Bio-X Center, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, P. R. China
Show Author Information

Abstract

Molecular imaging is developing fast towards multi-modality and simultaneous therapy. For molecular imaging, upconversion nanoparticles (UCNPs), especially lanthanide-doped nanocrystals own obvious advantages such as low toxicity, large Stokes shifts, high resistance to photo-bleaching and photochemical degradation. Moreover, near infrared (NIR) excitation contributes to the auto-fluorescence minimization, a larger penetrating depth, and less harmfulness to cells compared with traditional ultraviolet (UV) excitation. On the other hand, the composites of UCNPs with biological target molecules exert superior performance, broadening their biological application scope from multi-modality imaging, to simultaneous drug delivery and targeted therapy. Herein, we review main advances of UCNPs applied to tumor multi-modality imaging and simultaneous therapy over the past few years, explore their application prospects, and discuss the concepts, issues, approaches, and challenges, with the aim of improving the application of UCNPs in biomedical imaging and therapy in near future.

References

1

Cui D.X., Han Y, Li Z, Song H, Magnetic nanoprobes for in vivo targeted imaging and hyperthermia therapy of prostate cancer. Nano Biomed. Eng. 2009, 1:61-64.

2

Bao C.C., Yang H, Sheng P, Song H, Cui D. Cloning, expression, monoclonal antibody preparation of human gene nbeal1 and its application in targeted imaging of mouse glioma. Nano Biomed. Eng. 2009, 1:50-56.

3

Shan J., et al., NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 2009. 20(15): 155101.

4

Zhou J., Liu Z., Li F., Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012. 41(3): 1323-49.

5

Xiong L.Q., et al., Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 2009. 30(29):5592-600.

6

Zhou J., et al., Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 2010. 31(12): 3287-3295.

7

Zhang F., et al., Uniform Nanostructured Arrays of Sodium RareEarth Fluorides for Highly Efficient Multicolor Upconversion Luminescence. Angew. Chem. Int. Ed. 2007. 46(42): 7976-7979.

8

Li, C. et al., Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4: Er3+ and YbF3/YbF3: Er3+ microstructures. J. Mater. Chem. 2008. 18(12): 1353-1361.

9

Feng W., et al., Multicolour PEI/NaGdF 4 :Ce3+, Ln3+ nanocrystals by single-wavelength excitation. Nanotechnology 2007. 18(2): 025701.

10

Liu C. Chen D., Controlled synthesis of hexagon shaped lanthanidedoped LaF3 nanoplates with multicolor upconversion fluorescence. J. Mater. Chem. 2007. 17(37): 3875-3880.

11

Mai H.X., et al., High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties. J. Am. Chem. Soc. 2006. 128(19): 6426-6436.

12

Ehlert O., et al., A Four-Color Colloidal Multiplexing Nanoparticle System. ACS Nano, 2008. 2(1): 120-124.

13

Wang F., et al., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 2010. 463(7284) : 1061-5.

14

Zhang Y.W., et al., Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc. 2005. 127(10): 3260-3261.

15

Das G.K., Tan T.T.Y. Rare-Earth-Doped and Codoped Y2O3 Nanomaterials as Potential Bioimaging Probes. J. Phys. Chem. C 2008. 112(30): 11211-11217.

16

Heer S., et al., Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004. 16(23-24): 2102-2105.

17

Sivakumar S., Diamente P.R., van Veggel F.C.J.M. Silica-Coated Ln3+-Doped LaF3 Nanoparticles as Robust Down- and Upconverting Biolabels. Chem. A Eur. J. 2006. 12(22): 5878-5884.

18

Aebischer A., et al., Visible light emission upon near-infrared excitation in a transparent solution of nanocrystalline β-NaGdF4: Yb3+, Er3+. Chem. Phys. Lett. 2005. 407(1–3): 124-128.

19

Patra A., et al., Upconversion in Er3+:ZrO2 Nanocrystals. J Phys. Chem. B 2002. 106(8):1909-1912.

20

Shuang Fang L., et al., Upconverting nanophosphors for bioimaging. Nanotechnology 2009. 20(40): 405701.

21

Xu L., et al., Synthesis and upconversion properties of monoclinic Gd2O3:Er3+ nanocrystals. Optic. Mater. 2008. 30(8): 1284-1288.

22

Kong W., Shan J., Ju Y. Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors. Mater. Lett. 2010.64(6): 688-691.

23

Liu C., et al., Monodisperse, size-tunable and highly efficient [small beta]-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J. Mater. Chem. 2009. 19(21): 3546-3553.

24

Liu C., et al., Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J. Mater. Chem. 2009. 19(4): 489-496.

25

Liu C., et al., Size and morphology controllable synthesis of oildispersible LaF3:Yb, Er upconversion fluorescent nanocrystals via a solid–liquid two-phase approach. Scripta Mater. 2008. 58(2): 89-92.

26

Chen C., et al., Ionic Liquid-Based Route to Spherical NaYF4 Nanoclusters with the Assistance of Microwave Radiation and Their Multicolor Upconversion Luminescence. Langmuir 2010. 26(11): 8797-8803.

27

Mi C., et al., Novel microwave-assisted solvothermal synthesis of NaYF4:Yb, Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir 2011. 27(23): 14632-7.

28

Li, F., et al., Microwave-assisted synthesis and up-down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3+ nanocrystals. Dalton Trans 2012.

29

Zhang F., et al., Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties. Chem. Eur. J. 2009. 15(41): 11010-9.

30

Zeng S., et al., High uniformity and monodispersity of sodium rareearth fluoride nanocrystals: controllable synthesis, shape evolution and optical properties. CrystEngComm 2011. 13(5): 1384.

31

Yang T., et al., Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 2012. 33(14): 3733-42.

32

Liu Q., et al., Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2011. 133(43): 17122-5.

33

He M., et al., Dual Phase-Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrystals Via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging. Adv. Funct. Mater. 2011. 21(23): 4470-4477.

34

He M., et al., A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system. Chem Commun (Camb) 2011. 47(33): 9510-2.

35

Ma J., et al., Folic Acid-Conjugated LaF(3):Yb, Tm@SiO2 Nanoprobes for Targeting Dual-Modality Imaging of Upconversion Luminescence and X-ray Computed Tomography. J. Phys. Chem. B 2012. 116(48): 14062-70.

36

He, M., et al., Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system. Chem. 2012. 18(19): 5954-69.

37

Pan L., et al., Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer. Theranostics 2013. 3(3): 210-22.

38

Ruitao Chai H.L., Hou Z.Y., Zhang C.M., Peng C., Lin J. Preparation and Characterization of Upconversion Luminescent NaYF4:Yb3+, Er3+(Tm3+)/PMMA Bulk Transparent Nanocomposites Through In Situ Photopolymerization. J. Phys. Chem. C 2010. 114: 610–616.

39

Zeng S., et al., PEG modified BaGdF(5):Yb/Er nanoprobes for multimodal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging.Biomaterials 2012.33(36):9232-8.

40

Li Z., Zhang Y. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission. Angew. Chem. 2006. 118(46): 7896-7899.

41

Dong B., et al., Multifunctional NaYF4 :Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J. Mater. Chem. 2011. 21(17): 6193.

42

Feng W., Sun L.D., Yan C.H. Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem Commun (Camb) 2009(29): 4393-5.

43

Liu, N., et al., Highly plasmon-enhanced upconversion emissions from Au@[small beta]-NaYF4:Yb, Tm hybrid nanostructures. Chem. Commun. 2011. 47(27): 7671-7673.

44

Priyam A., Idris N.M., Zhang Y., Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J. Mater. Chem. 2012. 22(3): 960.

45

Zou W., et al., Broadband dye-sensitized upconversion of nearinfrared light. Nat. Photon. 2012. 6(8): 560-564.

46

Xie X. and X. Liu, Photonics: Upconversion goes broadband. Nat. Mater. 2012. 11(10): 842-3.

47

Idris N.M., et al., Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 2009. 30(28): 5104-5113.

48

Cheng L., et al., Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010. 3(10): 722-732.

49

Wang C., et al., Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 2012. 33(19): 4872-81.

50

Sun Y., et al., Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials 2013. 34(9): 2289-2295.

51

Gao G., et al., One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging. Nanoscale 2012. 5(1): 351-362.

52

Louie A., Multimodality Imaging Probes: Design and Challenges. Chem. Rev. 2010. 110(5): 3146-3195.

53

Cheng L., et al., Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 2011. 50(32): 7385-90.

54

Zhu X., et al., Core-shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 2012. 33(18): 4618-27.

55

Guo H., et al., Seed-mediated synthesis of NaY F4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology 2010. 21(12): 125602.

56

Ryu J., et al., Facile Synthesis of Ultrasmall and Hexagonal NaGdF4: Yb3+, Er3+ Nanoparticles with Magnetic and Upconversion Imaging Properties. J. Phys. Chem. C 2010. 114(49): 21077-21082.

57

Zeng S., et al., Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J. Mater. Chem. 2012. 22(19): 9870.

58

Wang C., Cheng L., Liu Z., Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011. 32(4): 1110-1120.

59

Xu H., et al., Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 2011. 32(35): 9364-9373.

60

Tian G., et al., Mn2+ dopant-controlled synthesis of NaYF4:Yb /Er upconversion nanoparticle for in vivo imaging and drug delivery. Adv Mater 2012. 24(9): 1226-1231.

61

Yang D., et al., Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anticancer drug delivery. Biomaterials 2013. 34(5): 1601-1612.

62

Xiao Q., et al., Novel multifunctional NaYF4:Er3+, Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chem. Commun. 2013. 49(15): 1527-1529.

63

Yang Y., et al., Fabrication of and Drug Delivery by an Upconversion Emission Nanocomposite with Monodisperse LaF3:Yb, Er Core /Mesoporous Silica Shell Structure. European J. Inorg. Chem. 2010. 2010(33): 5195-5199.

64

Tian G., et al., Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. J. Phys. Chem. C 2011.115 (48): 23790-23796.

65

Li, L.-L., et al., An Exceptionally Simple Strategy for DNAFunctionalized Up-Conversion Nanoparticles as Biocompatible Agents for Nanoassembly, DNA Delivery, and Imaging. J. Am. Chem. Soc. 2013. 135(7): 2411-2414.

66

Yang Y., et al., NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles.Nanoscale 2013. 5(1): 231-238.

67

Zhang F., et al., Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano lett. 2011. 12(1): 61-67.

68

Cheng L., Wang C., Liu Z., Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2012. 5(1):23-37.

69

Zhang P., et al., Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc. 2007. 129(15): 4526-4527.

70

Chatterjee D.K., Z. Yong, Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 2008. 3(1): 73-82.

71

Qian H.S., et al., Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 2009.5(20):2285-90.

72

Idris N.M., et al., In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012. 18(10): 1580-5.

73

Park.Y.I., et al., Theranostic Probe Based on Lanthanide-Doped Nanoparticles for Simultaneous In Vivo Dual-Modal Imaging and Photodynamic Therapy. Adv. Mater. 2012. 24(42): 5755-5761.

74

Qian L., et al., Gold decorated NaYF4:Yb, Er/NaYF4/silica (core/shell/shell)upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells. J. Nanopart. Res. 2011. 13(2): 499-510.

75

Dong B., et al., Multifunctional NaYF4 :Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J. Mater. Chem. 2011. 21(17): 6193-6200.

76

Cheng L., et al., Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy. Angew. Chem. 2011. 123(32): 7523-7528.

77

Cheng L., et al., Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 2012. 33(7): 2215-2222.

Nano Biomedicine and Engineering
Pages 137-145
Cite this article:
Zhou N, Ni J, He R. Advances of Upconversion Nanoparticles for Molecular Imaging. Nano Biomedicine and Engineering, 2013, 5(3): 137-145. https://doi.org/10.5101/nbe.v5i3.p137-145

325

Views

8

Downloads

8

Crossref

0

Scopus

Altmetrics

Published: 30 September 2013
© 2013 N. Zhou et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return