AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (722.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Non-spherical Gold Nanoparticles: Tumor Imaging and Therapy

Yunsheng Chen1,2Daxiang Cui1,2( )
School of biomedicine engineering, Shanghai JiaoTong University, Shanghai, 200240, China
Department of Bio-Nano Science and Engineering, National Key Laboratory of Micro/Nano Fabrication Technology Institute of Micro & Nano Science and Technology, Shanghai JiaoTong University, Shanghai, 200240, China
Show Author Information

Abstract

Non-spherical Gold Nanoparticles (AuNPs), with unique geometries properties, have become the new exciting focus of applications in tumor imaging and therapy recently. In this review, we summarized the properties and applications of non-spherical AuNPs for cancer imaging and therapy. We review four typical shapes of non-spherical AuNPs from their applications and advantages with the great optimism to the applications of non-spherical AuNPs in medicine.

References

1

Boyle P., Levin B. World Cancer Report. World Health Organization Press; 2008.

2

Jemal A., Siegel R., Xu J., Ward E. Cancer statistics. CA Cancer J. Clin. 2010, 60:277-300.

3

Yu M.K., Park J., Jon S.Y., Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2(1):3-44

4

Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Pher. 2008 83:761-769

5

Park K., Lee S., Kang E., Kim K., Choi K., Kwon I.C., New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 2009, 19:1553-1566

6

Choi Y.E., Kwak J.W., Park J.W., Nanotechnology for early cancer detection. Sensors 2010, 10:428-455

7

Cai W., Gao T., Hong H., Sun J., Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008, 1:17-32.

8

Llevot A., Astruc D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev. 2012, 41: 242-257

9

Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2007, 2:681-693

10

Mallick K., Wang Z.L. Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. J. Photoch. Photobio. A 2001, 140:75-80

11

Liz-Marzan L. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22:32-41

12

Murphy C.J., Sau T.K., Gole A.M., Odendorff C.J., Gao J., Gou L., Hunyadi S.E., Li T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109:13857-13870

13

Pérez-Juste J., Pastariza-Santos I., Liz-Marzan L., Mulvaney P., Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249:1807-1901

14

Link S., El-Sayed M. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409-453

15

Huang X.H., El-Sayed I.H., Qian W., El-Sayed M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128:2115-2120

16

Jain P.K., El-Sayed I.H., El-Sayed M.A. Au nanoparticles target cancer. Nano today 2007, 2:18-29

17

Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19:316-317.

18

Ahmadi T.S., Logunov S.L., El-Sayed M. A. Picosecond dynamics of colloidal gold nanoparticles. J. Phys. Chem.1996, 100:8053-8056

19

Logunov S.L., Ahmadi T.S., El-Sayed M.A., Khoury J.T., Whetten R.L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 1997, 101:3706-3712.

20

Kamat P.V., Shanghavi B. Interparticle electron transfer in metal/semiconductor composites. picosecond dynamics of CdS-capped gold nanoclusters. J. Phys. Chem. B 1997, 101:7675-7679.

21

Chou C.H., Chen C.D., Wang C.R.C., Highly efficient, wavelengthtunable, gold nanoparticle based optothermal nanoconvertors. J. Phys. Chem. B 2005, 109:11135-11138

22

Huang X.H., El-Sayed M.A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1:13-28.

23

Li X.H., Zhang C., Laurent L.G.Y., Chen C.Y. “Smart” nanomaterials for cancer therapy. Sci. China Chem. 2010, 53:2241-2249

24

Tong L., Wei Q.S., Wei A., Cheng J.X. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 2009, 85:21-32

25

Li Q.Q., Liu F., Lu C., Lin J.M. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence, J. Phys. Chem. C, 2011, 115: 10964-10970

26

Mirkin C.A., Letsinger R.L., Mucic R.C., Storho J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607-609.

27

Von Maltzahn G., Park J.H., Agrawal A., Bandaru N.K., Das S.K., Sailor M.J. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69(9):3892-900.

28

Chamberland D.L., Agarwal A., Kotov N., Fowlkes J.B., Carson P.L., Wang X. Photoacoustic tomography of joints aided by an Etanerceptconjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. Nanotechnology 2008, 19, 095101.

29

Yavuz M.S., Cheng Y.Y., Chen J.Y., Cobley C.M., Zhang Q., Rycenga M., Xie J.W., Kim C., Song K.H.,. Schwartz A.G, Wang L.H.V., Xia Y.N. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8:935-939.

30

Moon G.D., Choi S.W., Cai X., Li W.Y., Cho E.C., Jeong U., Wang L.V., Xia Y.N. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 2011, 133:4762-4765.

31

Nikoobakht B., El-Sayed M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15:1957-1962.

32

Thomas K.G., Barazzouk S., Ipe B.I., Joseph S.T.S., Kamat P.V. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B 2004 108:13066-13068

33

Li X., Qian J., He S.L. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing. Nanotechnology 2008, 19:355501-355508

34

Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105:4065-4067.

35

Gómez-Graña S., Hubert F., Testard F., Guerrero-Martínez A., Grillo I., Liz-Marzán L.M.. Surfactant (Bi) layers on gold nanorods. Langmuir 2012, 28:1453-1459.

36

Zhang J.J., Liu Y.G., Jiang L.P. Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin. Electrochem. Comm. 2008, 10: 355-358.

37

Murphy C.J., Gole A.M., Stone J.W. Gold nanoparticles in biology: beyond toxicity to cellular Imaging. Acc. Chem. Res. 2008, 41:1721-1730.

38

Alkilany A.M., Nagaria P.K., Hexel C.R., Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 2009, 5:701-708.

39

Li Z.M., Huang P., Zhang X.J., Lin J., Yang S., Liu B., Gao F., Xi P., Ren Q.S., Cui D.X. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor Targeting and photothermal therapy. Mol. Pharm. 2010, 7 (1): 94-104

40

Huang P., Bao L., Zhang C.L., Lin J., Luo T., Yang D.P., He M., Li Z.M., Gao G., B. Gao, S. Fu, D.X. Cui, Folic acid-conjugated Silicamodified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 2011, 32: 9796-9809

41

Franchini M.C., Ponti J., Lemor R. Polymeric entrapped thiol-coated gold nanorods: cytotoxicity and suitability as molecular optoacoustic contrast agent. J. Mater. Chem. 2010, 20:10908-10914.

42

Zhang J.J., Liu Y.G., Jiang L.P., Zhu J.J.Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin, Electrochem. Comm. 2008, 10:355-358

43

Pelaz B., Grazu V., Ibarra A., Magen C., del Pino P., de la Fuente J.M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir 2012, 28:8965-8970

44

Millstone J.E.; Park S., Shuford K.L., Qin L., Schatz G.C., Mirkin C.A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127: 5312-5313

45

Insana M.F., Pellot-Barakat C., Sridhar M., Lindfors K.K. Viscoelastic imaging of breast tumor microenvironment with ultrasound. J. Mammary Gland Biol. 2004, 9:393-404

46

Bao C.C., Beziere N., del Pino P., Pelaz B., Estrada G., Tian F., Ntziachristos V., de la Fuente J.M., Cui DX. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. small 2013, 9:67-74

47

Hrelescu C., Sau T.K., Rogach A.L., Jäckel F., Laurent G., Douillard L., Charra F.. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars, Nano Lett. 2011, 11:402-407

48

Pastoriza-Santos I., Liz-Marzan L.M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2002, 2:903-905.

49

Kim F., Connor S., Song H., Kuykendall T., Yang P., Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43:3759-3763.

50

Pastoriza-Santos I., Liz-Marzan L.M. Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 2008, 18: 1724-1737.

51

Yuan H., Khoury C.G., Hwang H., Wilson C.M., Grant G.A., Vo-Dinh T. Gold. nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23:075102

52

Yuan H., Khoury C.G., Wilson C.M., Grant G.A. Bennett A.J., Vo-Dinh T., In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomed-Nanotechnol. 2012, 8:1355-1363

53

Chen J.Y., Yang M.X., Zhang Q., Cho E.C., Cobley C.M., Kim C., Glaus C., Wang L.V., Welch M.J., Xia Y.N., Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv. Funct. Mater. 2010, 20:3684-3694

54

Chen J., Saeki F., Wiley B.J., Cang H., Cobb M.J., Li Z.Y., Au L., Zhang H., Kimmey M.B., Li X., Xia, Y.N. Gold nanocages: bioconjugation and their Potential use as optical imaging contrast agents. Nano Lett. 2005, 5:473-477.

55

Hu M., Chen J.Y., Li Z.Y., Au L., Hartland G. V.; Li X. D., Marquez M., Xia Y.N. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. ReV. 2006, 35:1084-1094.

56

Sun Y., Xia Y.N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126:3892-3901.

57

Song K.H., Kim C., Cobley C.M., Xia Y.N., Wang L.V. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett. 2009, 9:183-188

58

L. Au, D.S. Zheng, F. Zhou, Z.Y. Li, X.D. Li, Y.N. Xia. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008, 2:1645-1652

Nano Biomedicine and Engineering
Pages 160-167
Cite this article:
Chen Y, Cui D. Non-spherical Gold Nanoparticles: Tumor Imaging and Therapy. Nano Biomedicine and Engineering, 2013, 5(4): 160-167. https://doi.org/10.5101/nbe.v5i4.p160-167

294

Views

6

Downloads

3

Crossref

5

Scopus

Altmetrics

Published: 30 December 2013
© 2013 Y.S. Chen and D.X. Cui.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return