AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (507.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Systems Molecular Imaging: Right Around the Corner

Department of Radiology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
Molecular Imaging Center of Harbin Medical University, Harbin, Heilongjiang, China
Show Author Information

Abstract

With the development of 'omics', systems biology and molecular imaging technology, a common tendency of integration of a variety of multi-modality, multi-target imaging and theranostics technology has led to the establishment of a concept that could be called “systems molecular imaging”. It can be used to show the complexity, diversity and in vivo biological behavior and the development and progress of disease in an organism qualitatively and quantitatively at a systems level. Ultimately, systems molecular imaging should enable the physicians not only to diagnose tumors accurately but also to provide 'on the spot' treatment efficiently. It will become comprehensive research tools and technical means for life science and medical sciences.

References

[1]

Weissleder R: Molecular imaging: exploring the next frontier. Radiology 1999, 212(3): 609-614.

[2]

Shen B: Molecular Imaging. Beijing: People’s Health Publishing House (First Edition) 2007.

[3]

Brazma A, Krestyaninova M, Sarkans U: Standards for systems biology. Nature reviews Genetics 2006, 7(8): 593-605.

[4]

Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine 2012, 366(10): 883-892.

[5]

Quail DF, Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nature medicine 2013, 19(11): 1423-1437.

[6]

Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5): 646-674.

[7]

Bedard PL, Hansen AR, Ratain MJ, Siu LL: Tumour heterogeneity in the clinic. Nature 2013, 501(7467): 355-364.

[8]

Marte B: Tumour heterogeneity. Nature 2013, 501(7467): 327.

[9]

Meacham CE, Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature 2013, 501(7467): 328-337.

[10]

Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS et al.: Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013, 497(7447): 108-112.

[11]

Sawyers CL: The cancer biomarker problem. Nature 2008, 452(7187): 548-552.

[12]

Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM et al.: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. The lancet oncology 2012, 13(3): 239-246.

[13]

Hynes NE, Lane HA: ERBB receptors and cancer: the complexity of targeted inhibitors. Nature reviews Cancer 2005, 5(5): 341-354.

[14]

Roda JM, Sumner LA, Evans R, Phillips GS, Marsh CB, Eubank TD: Hypoxia-inducible factor-2alpha regulates GM-CSF-derived soluble vascular endothelial growth factor receptor 1 production from macrophages and inhibits tumor growth and angiogenesis. J Immunol 2011, 187(4): 1970-1976.

[15]

Ho QT, Kuo CJ: Vascular endothelial growth factor: biology and therapeutic applications. The international journal of biochemistry & cell biology 2007, 39(7-8): 1349-1357.

[16]

Ferrara N: Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews 2004, 25(4): 581-611.

[17]

Semenza GL: Targeting HIF-1 for cancer therapy. Nature reviews Cancer 2003, 3(10): 721-732.

[18]

Zhang L, Wang K, Zhao F, Hu W, Chen J, Lanza GM, Shen B, Zhang B: Near Infrared Imaging of EGFR of Oral Squamous Cell Carcinoma in Mice Administered Arsenic Trioxide. PloS one 2012, 7(9): e46255.

[19]

Wang K, Wang K, Li W, Huang T, Li R, Wang D, Shen B, Chen X: Characterizing breast cancer xenograft epidermal growth factor receptor expression by using near-infrared optical imaging. Acta Radiol 2009, 50(10): 1095-1103.

[20]

Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C: Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 2003, 63: 7870-7875.

[21]

Hirata M, Kanai Y, Naka S, Yoshimoto M, Kagawa S, Matsumuro K, Katsuma H, Yamaguchi H, Magata Y, Ohmomo Y: A useful EGFR-TK ligand for tumor diagnosis with SPECT: development of radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3’-iodophenoxy) quinazoline. Annals of nuclear medicine 2013, 27(5): 431-443.

[22]

Yeh HH, Ogawa K, Balatoni J, Mukhapadhyay U, Pal A, Gonzalez-Lepera C, Shavrin A, Soghomonyan S, Flores L, 2nd, Young D et al.: Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(4): 1603-1608.

[23]

Fu P, Shen B, Zhao C, Tian G: Molecular imaging of MDM2 messenger RNA with 99mTc-labeled antisense oligonucleotides in experimental human breast cancer xenografts. J Nucl Med 2010, 51(11): 1805-1812.

[24]

Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, Wang K, Shen B: In Vivo Monitoring of Angiogenesis Inhibition via Down-Regulation of Mir-21 in a VEGFR2-Luc Murine Breast Cancer Model Using Bioluminescent Imaging. PLoS One 2013, 8(8): e71472.

[25]

Huang T, Civelek AC, Li J, Jiang H, Ng CK, Postel GC, Shen B, Li XF: Tumor microenvironment-dependent 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole uptake: a pilot study in mouse models of human non-small cell lung cancer. J Nucl Med 2012, 53(8): 1262-1268.

[26]

Gao J, Chen K, Miao Z, Ren G, Chen X, Gambhir SS, Cheng Z: Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 2011, 32(8): 2141-2148.

[27]

Capala J, Bouchelouche K: Molecular imaging of HER2-positive breast cancer: a step toward an individualized ‘image and treat’ strategy. Current opinion in oncology 2010, 22(6): 559-566.

[28]

Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC: Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998, 4(5): 623-626.

[29]

Schmieder AH, Winter PM, Williams TA, Allen JS, Hu G, Zhang H, Caruthers SD, Wickline SA, Lanza GM: Molecular MR Imaging of Neovascular Progression in the Vx2 Tumor with alphavbeta3-Targeted Paramagnetic Nanoparticles. Radiology 2013, 268(2): 470-480.

[30]

Schmieder AH, Wang K, Zhang H, Senpan A, Pan D, Keupp J, Caruthers SD, Wickline SA, Shen B, Wagner EM et al.: Characterization of early neovascular response to acute lung ischemia using simultaneous F/H MR molecular imaging. Angiogenesis 2013.

[31]

Sun X, Yan Y, Liu S, Cao Q, Yang M, Neamati N, Shen B, Niu G, Chen X: 18F-FPPRGD2 and 18F-FDG PET of Response to Abraxane Therapy. J Nucl Med 2011, 52(1): 140-146.

[32]

Weissleder R, Pittet MJ: Imaging in the era of molecular oncology. Nature 2008, 452(7187): 580-589.

[33]

Kinahan PE, Townsend DW, Beyer T, Sashin D: Attenuation correction for a combined 3D PET/CT scanner. Medical physics 1998, 25(10): 2046-2053.

[34]

Medarova Z, Pham W, Farrar C, Petkova V, Moore A: In vivo imaging of siRNA delivery and silencing in tumors. Nature medicine 2007, 13(3): 372-377.

[35]

Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY, Kang HW, Jon S: Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. Journal of the American Chemical Society 2007, 129(42): 12739-12745.

[36]

Foy SP, Manthe RL, Foy ST, Dimitrijevic S, Krishnamurthy N, Labhasetwar V: Optical imaging and magnetic field targeting of magnetic nanoparticles in tumors. ACS nano 2010, 4(9): 5217-5224.

[37]

Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X: PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31(11): 3016-3022.

[38]

Stelter L, Pinkernelle JG, Michel R, Schwartlander R, Raschzok N, Morgul MH, Koch M, Denecke T, Ruf J, Baumler H et al.: Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging 2010, 12(1): 25-34.

[39]

Scheffler M, Kobe C, Zander T, Nogova L, Kahraman D, Thomas R, Neumaier B, Dietlein M, Wolf J: Monitoring reversible and irreversible EGFR inhibition with erlotinib and afatinib in a patient with EGFR-mutated non-small cell lung cancer (NSCLC) using sequential[18F] fluorothymidine (FLT-)PET. Lung Cancer 2012, 77(3): 617-620.

[40]

Shen B: Molecular Imaging. Beijing: People’s Health Publishing House (Second Edition) 2010.

[41]

Lanza GM, Moonen C, Baker JR, Jr., Chang E, Cheng Z, Grodzinski P, Ferrara K, Hynynen K, Kelloff G, Lee YE et al.: Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014, 6(1): 1-14.

[42]

Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C et al.: Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials 2010, 9(2): 172-178.

[43]

Shen B: Molecular Imaging: Principle and Practice. Beijing: People’s Health Publishing House 2013.

[44]

Palekar-Shanbhag P, Jog SV, Chogale MM, Gaikwad SS: Theranostics for cancer therapy. Current drug delivery 2013, 10(3): 357-362.

[45]

Pan D, Sanyal N, Schmieder AH, Senpan A, Kim B, Yang X, Hu G, Allen JS, Gross RW, Wickline SA et al.: Antiangiogenic nanotherapy with lipase-labile Sn-2 fumagillin prodrug. Nanomedicine 2012, 7(10): 1507-1519.

Nano Biomedicine and Engineering
Pages 1-6
Cite this article:
Shen B. Systems Molecular Imaging: Right Around the Corner. Nano Biomedicine and Engineering, 2014, 6(1): 1-6. https://doi.org/10.5101/nbe.v6i1.p1-6

302

Views

5

Downloads

0

Crossref

8

Scopus

Altmetrics

Received: 20 December 2013
Accepted: 17 January 2014
Published: 20 January 2014
© 2014 B.Z. Shen.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return