AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Quantum Dot Conjugated Magnetic Nanoparticles for Targeted Drug Delivery and Imaging

Indu Venugopal1Sebastian Pernal1Taylor Fusinatto1,2David Ashkenaz1,3Andreas Linninger1( )
University of Illinois at Chicago, Department of Bioengineering, Laboratory for Product and Process Design
NSF-RET fellow from Bessie Rhodes Magnet School, Science Department
NSF-RET fellow from Innovations High School, Science Department
Show Author Information

Abstract

Nanotechnology is being increasingly applied for developing drug delivery options for specific treatments. Magnetic nanoparticles have drawn attention as drug delivery vehicles due to their stability, biocompatibility and ability to be non-invasively guided to desired target areas using magnetic fields. In this paper, we describe a new delivery vehicle for magnetic drug targeting. In magnetic drug targeting, drug functionalized magnetic nanoparticles are guided and localized at specific sites using external magnetic fields. Magnetic nanoparticles act as contrast agents for magnetic resonance imaging. However, it cannot be visualized via this technique during drug delivery. This is between magnetic fields used for imaging and delivery can interference with each other. Our laboratory has synthesized a magnetic drug targeting vehicle conjugated with quantum dots that can be imaged during the drug delivery process with in vivo imaging techniques such as fluorescence molecular tomography. These nanocomposites can be used as drug delivery vehicles for the central nervous system, where drug targeting is especially difficult and minimizing side effects is critical.

References

[1]

J.A. DiMasi, R.W. Hansen, H.G. Grabowski, et al., Cost of innovation in the pharmaceutical industry. J. Health Econ., 1991, 10(2): 107-142.

[2]

L.B. Cardinal, Technological Innovation in the Pharmaceutical Industry: The Use of Organizational Control in Managing Research and Development. Organ. Sci., 2001, 12(1): 19-36.

[3]

T.K. Jain, J. Richey, M. Strand, et al., Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 2008, 29(29): 4012-4021.

[4]

N. Kohler, C. Sun, A. Fichtenholtz, et al., Methotrexate-Immobilized Poly(ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery. Small, 2006, 2(6): 785-792.

[5]

S. Mornet, J. Portier, E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater., 2005, 293(1): 127-134.

[6]

M. Liong, J. Lu, M. Kovochich, et al., Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano., 2008, 2(5): 889-896.

[7]

J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev., 2008, 60(11): 1241-1251.

[8]

N. Sanvicens, M.P. Marco, Multifunctional nanoparticles - properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26(8): 425-433.

[9]

B.J. Boyd, Past and future evolution in colloidal drug delivery systems. Expert Opin. Drug Deliv., 2008, 5(1): 69-85.

[10]

C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11): 1252-1265.

[11]

R.D.K. Misra, Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design. Mater. Sci. Technol., 2008, 24(9): 1011-1019.

[12]

J.R. McCarthy, K.A. Kelly, E.Y. Sun, et al., Targeted delivery of multifunctional magnetic nanoparticles. Nanomed., 2007, 2(2): 153-167.

[13]

D. Kim, Y.Y. Jeong, S. Jon, A Drug-Loaded Aptamer - Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano, 2010, 4(7): 3689-3696.

[14]

M.E. Davis, Non-viral gene delivery systems. Curr. Opin. Biotechnol., 2002, 13(2): 128-131.

[15]

J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3): 214-221.

[16]

B. Duncan, C. Kim, V.M. Rotello, Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Controlled Release, 2010, 148(1): 122-127.

[17]

G. Han, P. Ghosh, V.M. Rotello, Functionalized gold nanoparticles for drug delivery. Nanomed., 2007, 2(1): 113-123.

[18]

S.D. Brown, P. Nativo, J.A. Smith, et al., Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. J. Am. Chem. Soc., 2010, 132(13): 4678-4684.

[19]

H.D.M. Hettiarachchi, Y. Hsu, T.J.H. Jr, et al., The Effect of Pulsatile Flow on Intrathecal Drug Delivery in the Spinal Canal. Ann. Biomed. Eng., 2011, 39(10): 2592-2602.

[20]

W. M Pardridge, Brain drug targeting: the future of brain drug development. Cambridge; New York: Cambridge University Press; 2001.

[21]

G.R. Reddy, M.S. Bhojani, P. McConville, et al., Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors. Clin. Cancer Res., 2006, 12(22): 6677-6686.

[22]

W.S. Enochs, G. Harsh, F. Hochberg, et al., Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging, 1999, 9(2): 228-232.

[23]

M.E. Davis, Z (Georgia) Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9): 771-782.

[24]

O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3): 284-304.

[25]

D.A. Gorin, S.A. Portnov, O.A. Inozemtseva, et al., Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Phys. Chem. Chem. Phys., 2008, 10(45): 6899.

[26]

Q. He, J. Shi, Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem., 2011, 21(16): 5845.

[27]

J.E. Kipp, The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2): 109-122.

[28]

J. Zhang, R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomater., 2007, 3(6): 838-850.

[29]

G. Huang, J. Gao, Z. Hu, et al., Controlled drug release from hydrogel nanoparticle networks. J. Controlled Release, 2004, 94(2-3): 303-311.

[30]
J. Hu, D.K.P. Johnston, R. O. Williams 3rd, Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs., 2004, 3: 233-245.
[31]

Y. Wang, S. Gao, W.H. Ye, et al., Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater., 2006, 5(10): 791-796.

[32]

L. Zhang, A.F. Radovic-Moreno, F Alexis, et al., Co-Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle-Aptamer Bioconjugates. Chem. Med. Chem., 2007, 2(9): 1268-1271.

[33]

A. Jordan, R. Scholz, K Maier-Hauff, et al., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater., 2001, 225(1): 118-126.

[34]

H.B. Na, I.C. Song, T. Hyeon, Inorganic Nanoparticles for MRI Contrast Agents. Adv. Mater., 2009, 21(21): 2133-2148.

[35]

S.A. Corr, S.J. Byrne, R. Tekoriute, et al., Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents. J. Am. Chem. Soc., 2008, 130(13): 4214-4215.

[36]

E. Lueshen, I. Venugopal, J. Kanikunnel, et al., Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model. Nanomed., 2014, 9: 1155-69

[37]

E. Lueshen, I. Venugopal, T. Soni, et al., Implant-Assisted Intrathecal Magnetic Drug Targeting to Aid in Therapeutic Nanoparticle Localization for Potential Treatment of Central Nervous System Disorders. J. Biomed. Nanotechnol., 2015, 11: 253-61

[38]

J. Kim, H.S. Kim, N. Lee, et al., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew. Chem. Int. Ed., 2008, 47(44): 8438-8441.

[39]

N. Nasongkla, E. Bey, J. Ren, et al., Multifunctional Polymeric Micelles as Cancer -Tar geted, MRI-Ultrasensitive Drug Delivery Systems. Nano Lett., 2006, 6(11): 2427-2430.

[40]

J. Kim, J.E. Lee, S.H. Lee, et al., Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer- Targeted Imaging and Magnetically Guided Drug Delivery. Adv. Mater., 2008, 20(3): 478-483.

[41]

J.E. Lee, N. Lee, H. Kim, et al., Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. J. Am. Chem. Soc., 2010, 132(2): 552-557.

[42]

J.H. Park, G von Maltzahn, E. Ruoslahti, et al., Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery. Angew. Chem., 2008, 120(38): 7394-7398.

[43]

X. Yang, H. Hong, J.J. Grailer, et al., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 2011, 32(17): 4151-4160.

[44]

M.K. Yu, Y.Y. Jeong, J. Park, et al., Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angew. Chem. Int. Ed., 2008, 47(29): 5362-5365.

[45]

B. Chertok, B.A. Moffat, A.E. David, et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, 29(4): 487-496.

[46]

F. Gazeau, M. Lévy, C. Wilhelm, Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomed., 2008, 3(6): 831-844.

[47]

M.C. Bourg, A. Badia, R.B. Lennox, Gold-Sulfur Bonding in 2D and 3D Self-Assembled Monolayers: XPS Characterization. J. Phys. Chem. B, 2000, 104(28): 6562-6567.

[48]

S.H. Lee, K.H. Bae, S.H. Kim, K.R. Lee, T.G. Park, Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm., 2008, 364(1): 94-101.

[49]

W.C.W. Chan, S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281(5385): 2016-2018.

[50]

Z. Kaul, T. Yaguchi, S.C. Kaul, et al., Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res., 2003, 13(6): 503-507.

[51]

A.F. van Driel, G. Allan, C. Delerue, et al., Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States. Phys. Rev. Lett., 2005, 95(23): 236804.

[52]

M. Mandal, S. Kundu, S.K. Ghosh, et al., Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci., 2005, 286(1): 187-194.

[53]

L.P. Ramirez, K. Landfester, Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys., 2003, 204(1): 22-31.

[54]

A.H. Lu, E.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed., 2007, 46(8): 1222-1244.

[55]

R.A. Frimpong, J. Dou, M. Pechan, et al., Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J. Magn. Magn. Mater., 2010, 322(3): 326-331.

[56]

J. Duan, L. Song, J. Zhan, One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res., 2010, 2(1): 61-68.

[57]

T. Lühmann, M. Rimann, A.G. Bittermann, et al., Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjug. Chem., 2008, 19(9): 1907-1916.

[58]

R. Bhadelia, A. Bogdan, R. Kaplan, et al., Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study. Neuroradiology, 1997, 39(4): 258-264.

[59]

M. Freund, M. Adwan, H. Kooijman, et al., [Measurement of CSF flow in the spinal canal using MRI with an optimized MRI protocol: experimental and clinical studies]. ROFO. Fortschr. Geb. Rontgenstr. Nuklearmed., 2001, 173(4): 306-314.

[60]

A.C. Lui, T.Z. Polis, N.J. Cicutti, Densities of cerebrospinal fluid and spinal anaesthetic solutions in surgical patients at body temperature. Can. J. Anaesth., 1998, 45(4): 297-303.

[61]

J. Chatterjee, Y. Haik, C.J. Chen, Size dependent magnetic properties of iron oxide nanoparticles. J. Magn. Magn. Mater., 2003, 257(1): 113-118.

[62]

H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci., 2003, 265(2): 283-295.

[63]

J.A. Dearing, P.M. Bird, R.J.L. Dann, et al., Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int., 1997, 130(3): 727-736.

[64]

V.I. Klimov, A.A. Mikhailovsky, S. Xu, et al., Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science, 2000, 290(5490): 314-317.

[65]

N.M. Park, C.J. Choi, T.Y. Seong, S.J. Park, Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride. Phys. Rev. Lett., 2001, 86(7): 1355-1357.

[66]

A. Misra, S. Ganesh, A. Shahiwala, et al., Drug delivery to the central nervous system: a review. J Pharm Pharm Sci, 2003, 6(2): 252-273.

[67]

R.G. Thorne, W.H.I. Frey, Delivery of Neurotrophic Factors to the Central Nervous System: Pharmacokinetic Considerations. Clin. Pharmacokinet., 2001, 40(12): 907-946.

[68]

E. Dulkeith, A.C. Morteani, T. Niedereichholz, et al., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett., 2002, 89(20): 203002.

[69]

E. Dulkeith, M. Ringler, T.A. Klar, et al., Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression. Nano Lett., 2005, 5(4): 585-589.

[70]

C.C. Berry, Possibl e exploit at ion of ma gnet ic nanoparticle?cell interaction for biomedical applications. J. Mater. Chem., 2005, 15(5): 543.

[71]

I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, Supplement: 24-36.

[72]

H. He, X. Sun, X. Wang, H. Xu, Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands. Lumin. J. Biol. Chem. Lumin., 2014, 29(7): 837-845.

[73]

H. Qian, C. Dong, J. Weng, J. Ren, Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small Weinh. Bergstr. Ger., 2006, 2(6): 747-751.

[74]

R.K. Singhal, M.E. Anderson, A Meister, Glutathione, a first line of defense against cadmium toxicity. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 1987, 1(3): 220-223.

[75]

H. Soo Choi, W. Liu, P. Misra, et al., Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10): 1165-1170.

Nano Biomedicine and Engineering
Pages 24-38
Cite this article:
Venugopal I, Pernal S, Fusinatto T, et al. Quantum Dot Conjugated Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Nano Biomedicine and Engineering, 2016, 8(1): 24-38. https://doi.org/10.5101/nbe.v8i1.p24-38

461

Views

11

Downloads

6

Crossref

9

Scopus

Altmetrics

Received: 12 December 2015
Accepted: 18 February 2016
Published: 12 March 2016
© 2016 Indu Venugopal, Sebastian Pernal, Taylor Fusinatto, David Ashkenaz and Andreas Linninger.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return