AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis, Characterization and Applications of (E)-3-((5-bromo-2-hydroxy-3-methoxycyclohexa-1,3-dienyl) methyleneamino)-6-(hydroxymethyl)-tetrahydro-2H-pyran-2,4,5-triol

Solomon Tadesse1Yelda Bingöl Alpaslan2Mustafa Yıldız3,4( )Hüseyin Ünver5Kadir Aslan1( )
Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
Department of Biophysics, Faculty of Medicine, Giresun University, Giresun, Turkey
Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey
Nanoscience and Technology Research and Application Center (NANORAC), Çanakkale Onsekiz Mart University, Çanakkale, Turkey
Department of Physics, Faculty of Science, Ankara University, 06100 Besevler-Ankara, Turkey
Show Author Information

Abstract

We present the synthesis, characterization, biological and sensing applications of a Schiff base, (E)-3-((5-bromo-2-hydroxy-3-methoxycyclohexa-1, 3-dienyl)methyleneamino)-6-(hydroxymethyl)-tetrahydro-2H-pyran-2,4,5-triol. Characterization of the title compound was carried out using theoretical quantum-mechanical calculations and experimental spectroscopic methods. The molecular structure of the title compound was confirmed using NMR and FTIR, which was in good agreement with the structure predicted by the theoretical calculations. The title compound was evaluated for its ability to detect anions in DMSO and on a solid surface and for its antimicrobial activity against several common microorganisms.

Electronic Supplementary Material

Download File(s)
nbe-8-2-72_ESM.pdf (219.8 KB)

References

[1]

M.R.E. Aly, R.R. Schmidt, New diacylamino protecting groups for glucosamine. European Journal of Organic Chemistry, 2005, 2005(20): 4382-4392.

[2]

A.N. Bedekar, A. N. Naik and A.C. Pise, Schiff base derivatives of 2-Amino-2-deoxy-1,3,4,6-tetra-O-acetyl-b-D-glucopyranose. Asian J. Chem, 2009, 21(9): 6661-6666.

[3]

J. Costamagna, L.E. Lillo, B. Matsuhiro, et al., Ni(Ⅱ) complexes with Schiff bases derived from amino sugars. Carbohydr Res, 2003, 338(15): 1535-1542.

[4]

J.C. Irvine, J.C. Earl, Salicylidene derivatives of d-glucosamine. Journal of the Chemical Society, Transactions, 1922, 121: 2376.

[5]

B. Kołodziej, E. Grech, W. Schilf, et al., Anomeric and tautomeric equilibria in d-2-glucosamine Schiff bases. Journal of Molecular Structure, 2007, 844-845: 32-37.

[6]

D.T. Nguyen, V. Q. Nguyen, Study on synthesis of 2-(Substituted Benzylidene)amino-2-Deoxy-1,3,4,6-Tetra-O-Acetyl-β-D-Glucopyranoses from D-Glucosamine. Letters in Organic Chemistry, 2013, 10(2): 85-90.

[7]

E.M. Perez, M. Avalos, R. Babiano, et al., Schiff bases from D-glucosamine and aliphatic ketones. Carbohydr Res, 2010, 345(1): 23-32.

[8]

M. Gavranić, B. Kaitner, E. Meštrović, Intramolecular N−H...O hydrogen bonding, quinoid effect, and partial π-electron delocalization in N-aryl Schiff bases of 2-hydroxy-1-naphthaldehyde: the crystal structures of planar N-(α-naphthyl)- and N-(β-naphthyl)-2-oxy-1-naphthaldimine. Journal of Chemical Crystallography, 1996, 26(1): 23-28.

[9]

B. Kaitner, G. Pavlovic, A reinvestigation of the quinoidal effect in N-n-Propyl-2-oxo-1-naphthylidenemethylamine. Acta Crystallographica Section C Crystal Structure Communications, 1996, 52: 2573-2575.

[10]

H. Nazır, M. Yıldız, H. Yılmaz, et al., Intramolecular h yd r ogen b ond ing and tau tomerism in Schiff bases. Structure of N-(2-pyridil)-2-oxo-1-naphthylidenemethylamine. Journal of Molecular Structure, 2000, 524: 241-250.

[11]

H. Ünver, M. Yıldız, Tautomerism in solution and solid state, spectroscopic studies and crystal structure of (Z)-1-[(4-amino-2,3,5,6-tetramethylphenylamino)methylene]-1,8a-dihydronaphthalen-2(3H)-one. Spectroscopy Letters, 2010, 43(2): 114-121.

[12]

H. Ünver, M. Yıldız, D.M. Zengin, et al., Intramolecular hydrogen bonding and tautomerism in N-(3-pyridil)-2-oxo-1-naphthylidenemethylamine. Journal of Chemical Crystallography, 2001, 31(4): 211-216.

[13]

M. Yildiz, Synthesis and spectroscopic studies of some new polyether ligands of the Schiff base type. Spectroscopy Letters, 2004, 37(4): 367-381.

[14]

M. Yıldız, Z. Kılıç, T. Hökelek, Intramolecular hydrogen bonding and tautomerism in Schiff bases. Part I. Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane. Journal of Molecular Structure, 1998, 441(1): 1-10.

[15]

M. Yıldız, H. Ünver, D. Erdener, et al., Tautomeric properties and crystal structure of N-[2-hydroxy-1-naphthylidene]2,5-dichloroaniline. Crystal Research and Technology, 2006, 41(6): 600-606.

[16]

R. Arabahmadi, S. Amani, A new fluoride ion colorimetric sensor based on azo–azomethine receptors. Supramolecular Chemistry, 2014, 26(5-6): 321-328.

[17]

S. Guha, S. Saha, Fluoride ion sensing by an anion-πinteraction. J Am Chem Soc, 2010, 132(50): 17674-17677.

[18]

G. Liu, J. Shao, Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76(1): 99-105.

[19]

D. Sharma, A.R. Mistry, R.K. Bera, et al., Spectroscopic and computational studies on the development of simple colorimetric and fluorescent sensors for bioactive anions. Supramolecular Chemistry, 2013, 25(4): 212-220.

[20]

E.A. Dikusar, V.I. Potkin, N.G. Kozlov, Synthesis of water-soluble azomethines based on the substituted benzaldehydes of vanillin series and D-(+)-glucosamine hydrochloride. Russian Journal of General Chemistry, 2009, 79(12): 2655-2657.

[21]

D.B.T. Ngo, H.T. Ho, Nguyen, Q.V. Nguyen, et al., Investigation of synthetic reaction of azomethines from glucosamine and substituted benzaldehydes. Proceedings of the 15th Int. Electron. Conf. Synth. Org. Chem. November 2011: 1-30.

[22]

A.K. Sah, C.P. Rao, P.K. Saarenketo, et al., Synthesis, characterisation and crystal structures of Schiff bases from the reaction of 4,6-O-ethylidene-β-d-glucopyranosylamine with substituted salicylaldehydes. Carbohydrate Research, 2001, 335(1): 33-43.

[23]

F. Safoura, Novel synthesis of Schiff bases bearing glucosamine moiety. Res. J. Chem. Sci., 2014, 4(2): 25-28.

[24]

B. Barare, M. Yıldız, G. Alpaslan, et al., Synthesis, characterization, theoretical calculations, DNA binding and colorimetric anion sensing applications of 1-[(E)-[(6-methoxy-1,3-benzothiazol-2-yl)imino]methyl]naphthalen-2-ol. Sensors and Actuators B: Chemical, 2015, 215: 52-61.

[25]

M. Yıldız, Ö. Karpuz, C.T. Zeyrek, et al., Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde. Journal of Molecular Structure, 2015, 1094: 148-160.

[26]

A.D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange. The Journal of Chemical Physics, 1993, 98: 5648.

[27]

C. Peng, P.Y. Ayala, H.B. Schlegel, et al., Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 1996, 17(1): 49-56.

[28]

F. Li, M. Feterl, Y. Mulyana, et al., In vitro susceptibility and cellular uptake for a new class of antimicrobial agents: dinuclear ruthenium(Ⅱ) complexes. J Antimicrob Chemother, 2012, 67(11): 2686-2695.

[29]

A. Bondi, Van der Waals volumes and radii. The Journal of Physical Chemistry, 1964, 68(3): 441-451.

[30]

S.R. Salman, F.S. Kamounah, Mass spectral study of tautomerism in some 1-hydroxy-2-naphthaldehyde schiff bases. Spectroscopy Letters, 2002, 35(3): 327-335.

[31]

A.A. Ağar, H. Tanak, M. Yavuz, Experimental and quantum chemical calculational studies on 2-[(4-propylphenylimino)methyl]-4-nitrophenol. Molecular Physics, 2010, 108(13): 1759-1772.

[32]
I. Fleming, Frontier orbitals and organic chemical reactions. John Wiley & Sons. John Wiley & Sons, 1976.
[33]

A. Soltani, F. Ghari, A.D. Khalaji, et al., Crystal structure, spectroscopic and theoretical studies on two Schiff base compounds of 2,6-dichlorobenzylidene-2,4-dichloroaniline and 2,4-dichlorobenzylidene-2,4-dichloroaniline. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 139: 271-278.

[34]
R. M. Silverstein, F. X. Webster, D. J. Kiemel, Spectroscopic identification of organic compounds. John Wiley & Sons. John Wiley & Sons, 2005.
[35]
B.H. Stuart, InfraRed spectroscopy: fundamentals and applications. John Wiley & Sons. John Wiley & Sons, 2004.
[36]

H. Gökce, O. Akyildirim, S. Bahçeli, et al., The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy) benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one molecule investigated by a joint spectroscopic and quantum chemical calculations. Journal of Molecular Structure, 2014(1), 1056-1057: 273-284.

[37]

C. James, A.A. Raj, R. Reghunathan, et al., Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N, N-dimethyl benzylidene)cyclohexanone using density functional theory. Journal of Raman Spectroscopy, 2006, 37(12): 1381-1392.

[38]

T.C. White, S. Holleman, F. Dy, et al., Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother, 2002, 46(6): 1704-1713.

Nano Biomedicine and Engineering
Pages 72-81
Cite this article:
Tadesse S, Alpaslan YB, Yıldız M, et al. Synthesis, Characterization and Applications of (E)-3-((5-bromo-2-hydroxy-3-methoxycyclohexa-1,3-dienyl) methyleneamino)-6-(hydroxymethyl)-tetrahydro-2H-pyran-2,4,5-triol. Nano Biomedicine and Engineering, 2016, 8(2): 72-81. https://doi.org/10.5101/nbe.v8i2.p72-81

343

Views

11

Downloads

3

Crossref

4

Scopus

Altmetrics

Received: 15 March 2016
Accepted: 10 May 2016
Published: 13 May 2016
© 2016 Solomon Tadesse, Yelda Bingöl Alpaslan, Mustafa Yıldız, Hüseyin Ünver and Kadir Aslan.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return