AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Modification of Carbon Nanotubes as an Effective Solution for Cancer Therapy

Sara Tavakolifard1Esmaeil Biazar2( )
Department of Chemistry, Science and Research, Yazd University, Iran
Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
Show Author Information

Abstract

Carbon nanotubes (CNT) as a new class of nano-materials hold great potential for various biomedical applications. Owing to their unusual properties, carbon nanotubes have been extensively employed in electronics, nanotechnology and optics, among others. In spite of the great potential of carbon nanotubes in various domains of biomedicine, ineffcient dispersion in aqueous solutions and biological activities in vivo are still disputable. One important and feasible route in a struggle to overcome these obstacles is modification of CNTs with organic compounds and polymers, which have been widely studied and play a crucial role in biological and biomedical fields, particularly in the cancer therapy. This review focuses on the breakthrough of the recently used methods to functionalize onto the surface of carbon nanotubes with multiple chemical species in order to produce anticancer drug delivery systems for biomedical applications.

References

[1]

E. Biazar, S.K. Heidari, The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects. J. Biomed Nanotechnol, 2013, 9: 1471-1482.

[2]

M. Rezaei-Tavirani, E. Biazar, J. Ai, et al., Fabrication of collagen-coated poly (beta-hydroxy butyrate-cobeta-hydroxyvalerate) nanofiber by chemical and physical methods. Orient. J. Chem, 2011, 27: 385-395.

[3]

J. Ai, S.K. Heidari, F. Ghorbani, et al., Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method; and its cellular study. J. Nanomater, 2011, 2011: 1-8.

[4]

E. Biazar, S.K. Heidari, Chitosan–cross-linked nanofibrous PHBV nerve guide for rat for sciatic nerve regeneration across a defect bridge. ASAIO J, 2013, 59: 651-659.

[5]

M. Sahebalzamani, E. Biazar, M. Shahrezaei, et al., Surface modification of PHBV nanofibrous mat by laminin protein and its cellular study. Int. J. Polymer Mater Po, 2015, 64: 149-154.

[6]

E. Biazar, S.K. Heidari, Design of oriented porous PHBV scaffold as a neural guide. Int. J. Polymer Mater Po, 2014, 63: 753–757.

[7]

E. Biazar, S.K. Heidari, Gelatin-modified nanofibrous PHBV tube as artificial nerve graft for rat sciatic nerve regeneration. Int. J. Polym Mater Po, 2014, 63: 330–336.

[8]

R. Zeinali, E. Biazar, S.K. Heidari, et al., Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J, 2014, 60: 106–114.

[9]

E. Biazar, R. Zeinali and N. Montazeri, Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J, 2014, 60: 106–114.

[10]

A. Sahebalzamani, E. Biazar, Modification of poly caprolactone nanofibrous mat by laminin protein and its cellular study. J Biomater Tiss Eng, 2014, 4: 423-429.

[11]

H. Tahermansouri, E. Biazar, Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. New Carbon Mater, 2013, 28: 199–207.

[12]

Z. Roveimiab, A.R. Mahdavian, E. Biazar, et al., Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. Journal of Colloid Science and Biotechnology, 2012, 1: 82-88.

[13]

H. Tahermansouri, E. Biazar, Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. Carbon, 2013, 63: 594.

[14]

J. Azizian, H. Tahermansouri, E. Biazar, et al., Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations. Int. J. Nanomed 2010, 5: 907–914

[15]

F. Ghasemvand, E. Biazar, S. Tavakolifard, et al., Synthesis and valuation of multi-wall carbon nanotube-paclitaxel complexas an anti-cancer agent. International journal of polymeric materials, 2014, 63: 898-908.

[16]

E Biazar, S.K. Heidari, M.T. Rezaei, et al., Bone formation in calvarial defects by injectable nanoparticular scaffold loaded with stem cells. Expert Opin. Biol Ther, 2013, 13: 12-1653.

[17]

A. Baradaran-Rafii, E. Biazar, S.K. Heidari, et al., Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomat Sci-Polym E, 2015, 26: 1139-1151.

[18]

A. Baradaran-Rafii, E. Biazar and S. Heidari-keshel, Cellular response of limbal stem cells on PHBV/Gelatin nanofibrous scaffold for ocular epithelial regeneration. Int. J. Polym Mater Po, 2015, 64: 879-887.

[19]

A. Baradaran-Rafii, E. Biazar and S. Heidari-keshel, Cellular response of stem cells on nanofibrous scaffold for ocular surface bioengineering. ASAIO J, 2015, 61: 605-612.

[20]

A. Baradaran-Rafii, E. Biazar and S. Heidari-keshel, Cellular response of limbal stem cells on polycaprolactone nanofibrous scaffolds for ocular epithelial regeneration. Curr Eye Res, 2016, 41(3): 326-333.

[21]

A. Baradaran-Rafii, E. Biazar and S. Heidari-keshel, Cellular response of limbal stem cells on poly(hydroxybuthyrate-co-hydroxyvalerate) porous scaffolds for ocular surface bioengineering. Int. J. Polym Mater Po, 2015, 64: 815-821.

[22]

E. Biazar, M.T. Khorasani, N Montazeri, et al., Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomed, 2010, 5: 839-852.

[23]

D. Momenzadeh, A. Baradaran-Rafii, K.S. Heidari, et al., Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artif Cell Nanomed B, 2016, 2: 1-8.

[24]

R. Ameri, E. Biazar, Development of oriented nanofibrous silk guide for repair of nerve defects. Int. J. Polym Mater Po, 2016, 65(2): 91-95.

[25]

A. Bianco, Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Delivery, 2004, 1: 57-65.

[26]

S.Y. Madani, N. Naderi, O. Dissanayake, et al., A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomed, 2011, 6: 2963-2979.

[27]

S. Prakash, M. Malhotra, W. Shao, et al., Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Delivery Rev, 2011, 63: 1340-1351.

[28]

C. Fabbro, H. Ali-Boucetta, T. Da-Ros, et al., Targeting carbon nanotubes against cancer. Chem. Commun, 2012, 48: 3911-3926.

[29]

S.T. Yang, X. Wang, G. Jia, et al., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett, 2008, 181: 182-189.

[30]

B. Kang, D. Yu, Y. Dai, et al., Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small, 2009, 5: 1292-1301.

[31]

N.W Kam, M. O’Connell, H. Dai, et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA, 2005, 102: 11600-11605.

[32]

Y. Xu, M. Mahmood, A. Fejleh, et al., Carbon-covered magnetic nanomaterials and their application for the thermolysis of cancer cell. Int J Nanomedicine, 2010, 5: 167-176.

[33]

E.S. Day, L.R. Bickford, J.H. Slater, et al., Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomedicine, 2010, 5: 445-454.

[34]

N.W. Kam, H. Dai, Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc, 2005, 127: 6021-6026.

[35]

D. Borja-Cacho, E.H. Jensen, A.K. Saluja, et al., Molecular targeted therapies for pancreatic cancer. Am J Surg, 2008, 196: 430-441.

[36]

L. Mocan, F. Tabaran, T. Mocan, et al., Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multivalued carbon nanotubes. Int. J Nanomedicine, 2011, 6: 915-928.

[37]

N. Hadidi, F. Kobarfard, N. Nafissi-Varcheh, et al., Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. Int J Nanomedicine, 2011, 6: 737-746.

[38]

X. Zheng, F. Zhou. J. Xray, Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy. J Xray Sci Technol, 2011, 19: 275-284

[39]

L. Lacerda, A. Bianco, M. Prato, et al., Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Delivery Rev, 2006, 58: 1460-1470.

[40]

A.A. Bhirde, V. Patel, J. Gavard, et al., Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3: 307-316.

[41]

S. Iijima, Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-8.

[42]

S. Iijima, Carbon nanotubes: past, present, and future. Phys B Condens Matter, 2002, 323: 1-5.

[43]

P.A Tran, L. Zhang and T.J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug. Delivery Rev, 2009, 61: 1097-1111.

[44]

Z. Yang, M. Yang, G. Xiahou, et al., Targeted delivery of insulin-modified immunoliposomes in vivo. J. Liposome Res, 2009, 19: 116-121.

[45]

D.K. Chang, C.T. Lin, C.H. Wu, et al., A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PLoS One, 2009, 4: 4171–4182.

[46]

J.W. Park, K. Hong, D. B. Kirpotin, et al., Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res, 2002, 8: 1172-1181.

[47]

V. Sihorkar, S.P. Vyas, Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J. Pharm. Pharm. Sci, 2001, 4: 138-158.

[48]

W. Liang, M. Bockrath, D. Bozovic, et al., Fabry–Perot interference in a nanotube electron waveguide. Nature, 2001, 411: 665–669.

[49]

M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine, 2008, 4: 173-82.

[50]
S. Tavakolifard, E. Biazar, K. Pourshamsian, et al., Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artificial Cells, Nanomedicine, and Biotechnology: An International Journal, 2015: 1-7. Early Online.
[51]

R.G. Mendes, A. Bachmatiuk, B. Büchner, et al., Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B, 2013, 1: 401.

[52]

J.K. Vasir, V. Labhasetwar, Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Delivery Rev, 2007, 59: 718-728.

[53]

A.H. Faraji, P. Wipf, Nanoparticles in cellular drug delivery. Bioorg. Med. Chem, 2009, 17: 2950-2962.

[54]

R. Siegel, D. Naishadham and A. Jemal, Cancer statistics. Ca-Cancer J. Clin, 2012, 62: 10-29.

[55]

S. Dhar, Z. Liu, J. Thomale, et al., Lippard. Targeted single-wall carbon nanotube-mediated Pt (Ⅳ) prodrug delivery using folate as a homing device. J. Am. Chem. Soc, 2008, 130: 11467-76.

[56]

S. Aggarwal, Targeted cancer therapies. Nat. Rev. Drug Discov, 2010, 9: 427- 428.

[57]

H.A. Shih, J.S. Loeffler and N.J. Tarbell, Late effects of CNS radiation therapy. Cancer Treat Res, 2009, 105: 23-41.

[58]

W.D. Meriwether, N.R. Bachur, Inhibition of DNA and RNA metabolism by daunorubicin and adriamycin in L1210 mouse leukemia. Cancer Res, 1972, 32: 1137-1142.

[59]

C.A Frederick, L.D. Williams and G. Ughetto, et al., Structural comparison of anticancer drug–DNA complexes: adriamycin and daunomycin. Biochemistry, 1990, 29: 2538-2549.

[60]

A. Mukherjee, R. Lavery, B. Bagchi, et al., Simulation study of the molecular mechanism of intercalation of the anti-cancer drug daunomycin into DNA. Energy Tran. Dynamic in Biomaterial, 2009, 93: 165-180.

[61]

V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery, 2005, 4: 145-160.

[62]

D. Peer, J.M. Karp, S. Hong, et al., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol, 2007, 2: 751-760.

[63]

R. Sinha, G.J. Kim, S. Nie, et al., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther, 2006, 5: 1909-1917.

[64]

M. Grzelczak, M.A. Correa-Duarte, V. Salgueirino-Maceira, et al., Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer. Adv. Mater 2006, 18: 415-420.

[65]

X. Hong, J. Li, M. Wang, et al., Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem. Mater 2004; 16: 4022-4027.

[66]

P. Cherukuri, S.M. Bachilo and S.H. Litovsky, Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc, 2004, 126: 15638-15639.

[67]

M, Dresselhaus, H. Dai, Carbon nanotubes: Continued innovations and challenges. MRS Bull. Adv. Carbon Nanotubes, 2004, 29: 237-243.

[68]

K. König, Multiphoton microscopy in life sciences. J. Microsc, 2000, 200: 83-104.

[69]

S.M. Bachilo, M.S. Strano, C. Kittrell, et al.,Weisman RB. structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298: 2361–2366.

[70]

S. Mukherjee, R.N. Ghosh and F.R. Endocytosis. Physiol. Rev, 1997, 77: 759-803.

[71]

Y.W. Cho, J.D. Kim and K. Park, Polycation gene delivery systems: escape from endosomes to cytosol. J. Pharm. Pharmacol, 2003, 55: 721-734.

[72]

N. Shao, S. Lu, E. Wickstrom, et al., Integrated molecular targeting of IGF1R and Her2 surface receptors and destruction of breast cancer cells using carbon nanotubes. Nanotechnology, 2007, 18.

[73]

E. Basal, G.Z. Eghbali-Fatourechi, K.R. Kalli, et al., Functional folate receptor alpha is elevated in the blood of ovarian cancer patients. PLoS ONE, 2009, 4: e6292

[74]

C.J. Mathias, S. Wang, R.J. Lee, et al., Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med, 1996, 37: 1003-1008.

[75]

F. Yang, C. Jin, D. Yang, et al., Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. European J Cancer, 2011, 47: 1873-1882.

[76]

B. Pauwels, A.E.C. Korst and F. Lardon, Combined modality therapy of gemcitabine and radiation. Oncologist, 2005, 10: 34-51.

[77]

F. Yang, D. Fu, J. Long, et al., Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses, 2008, 70: 765-767.

[78]

R. Zboril, M. Mashlan and D. Petridis, Iron(ⅲ) oxides from thermal processes synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chem Mater, 2002, 14: 969-82.

[79]

J. Tucek, R. Zboril and D. Petridis, Maghemite nanoparticles by view of Mossbauer spectroscopy. J Nanosci Nanotechnol, 2006, 6: 926-47.

[80]

S. Purushotham, R. Ramanujan, Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater, 2009, 6: 502-510.

[81]

S.R. Bhattarai, K.C.R. Badahur, S. Aryal, et al., N-acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr Polym, 2007, 69: 467-77.

[82]

B. Chertok, B.A. Moffat, A.E. David, et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, 29: 487-496.

[83]

D. Pantarotto, J.P. Briand, M. Prato, et al., Translocation of bioactive peptidesvacross cell membranes by carbon nanotubes. Chem. Commun, 2004, 1: 16-17.

[84]

D. Pantarotto, C.D. Partidos, R. Graff, et al., Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc, 2003, 125: 6160-6164.

[85]

N.W.S. Kam, T.C. Jessop, P.A. Wender, et al., Nanotube molecular transporters: internalization of carbon nanotube protein conjugates into mammalian cells. J. Am. Chem. Soc, 2004, 126: 6850-6851.

[86]

E. Smythe, Clathrin-coated vesicle formation: a paradigmfor coated-vesicle formation. Biochem. Soc. Trans, 2003, 31: 736–739.

[87]

N.W.S. Kam, Z.L.H. Dai, Carbon nanotubes as intracellular transporters for proteinsand DNA: an investigation of the uptake mechanism and Pathway. Ang. Chem. Int. Edition, 2006, 45: 577–581.

[88]

B. Kang, S. Chang, Y. Dai, et al., Cell response to carbon nanotubes: Size-dependent intracellular uptake mechanism and subcellular fate. Small, 2010, 6: 2362–2366.

[89]

S.K. Smart, A.I. Cassady, G.Q. Lu, et al., The biocompatibility of carbon nanotubes. Carbon, 2006, 44: 1034-1047.

[90]

R. Hirlekar, M. Yamagar, H. Garse, et al., Carbon nanotubes and its applications: a review. Asian J. Pharm. Clin, 2009, 2: 17–27.

[91]

C.F. Lopez, S.O. Nielsen and P.B. Moore, Understanding nature's design for a nanosyringe. Proc. Natl. Acad. Sci. U.S.A, 2004, 101: 4431-4434.

[92]

Z. Liu, S. Tabakman, K. Welsher, et al., Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res, 2009, 2: 85-120.

[93]

D. Tasis, N. Tagmatarchis, V. Georgakilas, et al., Soluble carbon nanotubes. Chem. A Eur. J, 2003, 9: 4000-4008.

[94]

V.L. Colvin, The potential environmental impact of engineered nanomaterials. Nat. Biotech, 2003, 21: 1166-1170.

[95]

D.B. Warheit, B.R. Laurence, K.L. Reed, et al., Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci, 2004, 77: 117-125.

[96]

A. Bianco, K. Kostarelos, C.D. Partidos, et al., Biomedical applications of functionalized carbon nanotubes. Chem. Commun, 2005, 5: 571–577.

[97]

J.L. Bahr, E.T. Mickelson, M.J. Bronikowski, et al., Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem. Commun, 2001, 2: 193-194.

[98]

M.J. O’Connell, P. Boul, L.M. Ericson, et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett, 2001, 342: 265-271.

[99]

J. Chen, H. Liu, W.A. Weimer, et al., Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymer. J. Am. Chem. Soc, 2002, 124: 9034-9035.

[100]

M. Zheng, A. Jagota and M.S.M. Strano, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 2003, 302: 1545-1548.

[101]

S. Bandow, A.M. Rao, K.A. Williams, et al., Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B, 1997, 101: 8839-8842.

[102]

M. Adeli, R. Sepahvand, B. Astinchap, et al., Carbon nanotube-graft-block copolymers containing silver nanoparticles. Int. J. Nano sci, 2009, 8: 533-541.

[103]

M. Adeli, A. Bahari and H. Hekmatara, Carbon nanotube-graft-poly-(citric acid) nanocomposites. Nano, 2008, 3: 37-44.

[104]

M. Adeli, N. Mirab, M.S. Alavidjeh, et al., Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine. Polymer, 2009, 50: 3528-3536.

[105]

M. Adeli, S. Beyranvand and M. Hamid, Noncovalent interactions between linear-dendritic copolymers and carbon nanotubes lead to liposome-like nanocapsule. J. Mater. Chem, 2012, 22: 6947–6952.

[106]

F. Yuan, M. Dellian, D. Fukumura, et al., Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res, 1995, 55: 3752-3756.

[107]

S.K. Hobbs, W.L. Monsky, F. Yuan, et al., Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U.S.A, 1998, 95: 4607-4612.

[108]

G. Pastorin, W. Wu, S. Wieckowski, et al., Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun, 2006, 11: 1182-1184

[109]

Z. Liu, K. Chen, C. Davis, et al., Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res, 2008, 68: 6652-6660.

[110]

Z. Liu, X. Sun, N.R Nakayama, et al., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1: 50-56.

[111]

Z. Ji, G. Lin, Q. Lu, et al., Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid and Interface Science, 2012, 365: 143-149

[112]

X. Zhang, L. Meng, Q. Lu, et al., Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009, 30: 6041-6047.

[113]

P. Jeyamohan, T. Hasumura, Y. Nagaoka, et al., Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int. J. Nanomedicine, 2013, 8: 2653-2667.

[114]

Z. Tian, Y. Shi, M. Yin, et al., Functionalized multivalued carbon nanotubes anticancer drug carriers: synthesis, targeting ability and antitumor activity. Nano Biomed Eng, 2011, 3: 157-162.

[115]

M. Adeli, F. Hakimpoor, M. Ashiri, et al., Anticancer drug delivery systems based on noncovalent interactions between carbon nanotubes and linear–dendritic copolymers. Soft Matter, 2011, 7: 4062-4070.

[116]

Z. Sobhani, R. Dinarvand, F. Atyabi, et al., Increased paclitaxel cytotoxicity against cancer cel lines using a novel functionalized carbon nanotube. Int. J. Nanomedicine, 2011, 6: 705–719.

[117]

J. Chen, S. Chen, X. Zhao, et al., Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc, 2008, 130: 16778-16785.

[118]

E. Heister, V. Neves, C. Tilmaciu, et al., Triple functionalization of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon, 2009, 47: 2152-2160

[119]

X. Lou, R. Daussin, S. Cuenot, et al., Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chem. Mater, 2004, 16: 4005-4011.

[120]

S. Detriche, S. Devillers, J.F. Seffer, et al., The use of water-soluble pyrene derivatives to probe the surface of carbon nanotubes. Carbon, 2011, 49: 2935-2943.

[121]

C. Klumpp, K. Kostarelos, M. Prato, et al., Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta, 2006, 1758: 404-412

[122]

M. Bottini, N. Rosato and N. Bottini, PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Bio macromolecules, 2011, 12: 3381-3393.

[123]

L. Vaisman, H.D. Wagner amd G. Marom, The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci, 2006, 128: 37-46.

[124]

X. Liu, H. Tao, K. Yang, et al., Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials, 2011, 32: 144-151.

[125]

Z. Liu, M. Winters, M. Holodniyet, et al., siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed, 2007, 46: 2023-2027.

[126]

N.R. Nakayama, S. Bangsaruntip, X.M. Sun, et al., Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc, 2007, 129: 2448-2449.

[127]

R. Chen, Y. Zhang, H. Dai, et al., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc, 2001, 123: 3838-3839.

[128]

Q.W. Li, B.Q. Sun, I.A. Kinloch, et al., Sirringhaus H, Windle AH. Enhanced self-assembly, of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes. Chem. Mater, 2006, 18: 164-168.

[129]

P.A. Allen, W. Liu, V.P. Chauhan, et al., InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J. Am. Chem. Soc, 2010, 132: 470-471.

[130]

B. Kang, D.C. Yu, S.Q. Chang, et al., Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology, 2008, 19: 375103.

[131]

C. Fu, L. Meng, Q. Lu, et al., Large-scale production of homogeneous helical amylose/SWNTs complexes with good biocompatibility. Macromol Rapid Commun, 2007, 28: 2180-2184.

[132]

M. Numata, M. Sai, A.K. Kaneko, et al., Curdlan and schizophyllan (beta-1,3-glucans) can entrap single-wall carbon nanotubes in their helical superstructure. Chem Lett, 2004, 33: 232-233.

[133]

I. Gurevitch, S. Srebnik, Monte Carlo simulation of polymer wrapping of nanotubes. Chem Phys Lett, 2007, 444: 96-100.

[134]

V.G.S. Box, The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph, 2007, 26: 14-19.

[135]

S.M. Zeman, D.R. Phillips and D.M. Crothers, Characterization of covalent Adriamycin DNA adducts. Proc Natl Acad Sci, 1998, 95: 11561-11565.

[136]
M. Adeli (Ed.), Cancer etiology, diagnosis and treatments: Hybrid nanostructures in cancer therapy. Nova Science Publishers, 2012: 214.
[137]

M.J. O'Connell, S.H. Bachilo, C.B. Huffman, et al., Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593-596.

[138]

J.L. Eiseman, N.D. Eddington, J. Leslie, et al., Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother Pharmacol, 1994, 34: 465-471.

[139]

A. Sparreboom, O.T. van, W.J. Nooijen, Tissue distribution, metabolism and excretion of paclitaxel in mice. Anticancer Drugs, 1996, 7: 78-86.

[140]

A. Gangloff, W.A. Hsueh, A.L. Kesner, et al., Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18) F-fluoropaclitaxel. J Nucl Med, 2005, 46: 1866-1871.

[141]

A. Sparreboom, O.T. Van, W.J. Nooijen, et al., Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res, 1996, 56: 2112-2115.

[142]

T.K. Yeh, Z. Lu, M.G. Wientjes, et al., Formulating paclitaxel in nanoparticles alters its disposition. Pharm Res, 2005, 22: 867-874.

[143]

X.Y. Chen, C. Plasencia, Y.P. Hou, et al., Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem, 2005, 48: 1098-1106.

[144]

J. Nakamura, N. Nakajima, K. Matsumura, et al., In vivo cancer targeting of water-soluble taxol by folic acid immobilization. Journal Nanomedic Nanotechnol, 2011, 2: 106.

[145]

E. Lee, J. Lee, L. In-Hyun, et al., Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J. Med. Chem, 2008, 51: 6442–6449.

[146]

K. Kostarelos, A. Bianco, M. Prato, et al., Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol, 2009, 4: 627-633.

[147]

H.H.P. Yiu, Engineering the multifunctional surface on magnetic nanoparticles for targeted biomedical applications: A chemical approach. Nanomedicine, 2011, 6: 1429-1446.

[148]

S. Cheong, P. Ferguson, K.W. Feindel, et al., Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. Int. Ed, 2011, 50: 4206-4209.

[149]

J. Dobson, Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine, 2006, 1: 31-37.

[150]

J. Park, G. Maltzahn, E. Ruoslahti, et al., Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem., Int. Ed, 2008, 47: 7284-7288.

[151]

N. Cho, T. Cheong, J. HyunMin, et al., A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol, 2011, 6: 675-682.

[152]

O. Metin, V. Mazumder, S. Ozkar, et al., Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132: 1468-1469.

[153]

M.A. Gonzalez-Fernandez, T.E. Torres, M. Andres-Verges, et al., Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J. Solid State Chem, 2009, 182: 2779-2784.

[154]

D. Ugarte, A. Chatelain and W.A. De-Heer, Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274: 1897-1899.

[155]

P.M. Ajayan, T.W. Ebbesen, S Iijima, et al., Opening carbon nanotubes with oxygen and implications for filling. Nature, 1993, 362: 522-525.

[156]

K. Svensson, H. Olin and E. Olsson, Nanopipettes for metal transport. Phys. Rev. Lett, 2004, 93: 145901-145903.

[157]

H. He, Y. Zhang, C. Gao, et al., “Clicked” magnetic nanohybrids with a soft polymer interlayer. Chem. Commun, 2009, 13: 1655-1657.

[158]

K. Jiang, A. Eitan, L.S. Schadler, et al., Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett, 2003, 3: 275-277.

[159]

Z. Wang, M. Li, Y. Zhang, et al., Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon, 2007, 45: 2111-2115.

[160]

G.M. Rahman, D.M. Guldi, E. Zambon, et al., Dispersable carbon nanotube/gold nanohybrids: Evidence for strong electronic interactions. Small, 2005, 1: 527-530.

[161]

C. Wang, C. Bao, S. Liang, et al., RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res. Lett, 2014, 9: 264.

[162]

B.S. Gutrath, M.F. Beckmann, A. Buchkremer, et al., Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology, 2012, 23: 225707.

[163]

D.P. Yang, D.X. Cui, Advances and prospects of gold nanorods. Chem Asian J, 2008, 12: 2010-2022.

[164]

C. Bao, N. Beziere, P. del Pino, et al., Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small, 2013, 9: 68-74.

[165]

C. Wang, Z.M. Li, B. Liu, et al. Dendrimer modified SWCNTs for high efficient delivery and intracellular imaging of surviving siRNA. Nano Biomed Eng, 2013, 5: 125-130.

[166]

H Gong, R Peng and Z Liu. Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev, 2013, 65(15): 1951-1963.

[167]

J.W. Kim, E.I. Galanzha, E.V. Shashkov, et al., Golden carbon nanotubes as multimodal photoacoustic and photothermal high contrast molecular agents. Nat Nanotechnol, 2009, 4: 688-694.

[168]

D. Yang, F. Yang, J.H. Hu, et al., Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun, 2009, 29: 4447-4449.

[169]

D. Cai, J.M. Mataraza, Z. Qin, et al., Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods, 2005, 2: 449-454.

[170]

E.C. Vermisoglou, G. Pilatos, G.E. Romanos, et al., Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity. Nanotechnology, 2011, 22: 35602-35611.

[171]

X. Yang, X. Zhang, Y. Ma, et al., Superparamagnetic graphene oxide-Fe3O4nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem, 2009, 19: 2710-2714.

[172]

M.L. Chen, Y.J. He, X.W. Chen, et al., Quantum dots conjugated with Fe3O4 filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir, 2012, 28: 16469-16476.

[173]

J. Ai, E. Biazar, M. Jafarpour, et al., Nanotoxicology-nanoparticles safety at biomedical designs. Int. J. Nanomed, 2011, 6: 1117-1127

[174]

J.J. Khandare, A. Jalota-Badhwar, S.D. Satavalekar, et al., PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging. Nanoscale, 2012, 4: 837-844.

[175]

A. Masotti, A. Caporali, Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int. J. Mol. Sci, 2013, 14: 24619-24642.

[176]

M. Horie, H. Kato, K. Fujita, et al., In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol, 2012, 25: 605-619.

[177]

K. Kostarelos, Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv. Colloid Interface Sci, 2003, 106: 147-168.

[178]

A. Nel, T. Xia, L. Maedler, et al., Toxic potential of materials at the nano level. Science, 2006, 311: 622-627.

[179]

K. Donaldson, R. Aitken, L. Tran, et al., Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci, 2006, 92: 5-22.

[180]

R.J. Toh, A. Ambrosi and M. Pumera, Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Chemistry, 2012, 18: 11593-11596.

[181]

S. Pichardo, D. Gutierrez-Praena, M. Puerto, et al., Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro, 2012, 26: 672-677.

[182]

A. Hirsch, Functionalization of single-walled carbon nanotubes. Angew. Chem., Int. Ed, 2002, 41: 1853-1859.

[183]

K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. Small, 2005, 1: 180-192.

[184]

Z. Liu, C. Davis, W. Cai, et al., Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A, 2008, 105: 1410-1415

[185]

D. Cui, F. Tian, C.S. Ozkan, et al., Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology letters, 2005, 155: 73-85.

[186]

H. Gao, Y. Kong, D. Cui, et al., Spontenous insertion of DNA oligonucleotides into carbon nanotubes. Nano Letters, 2003, 3: 471-473.

[187]

F. Tian, D. Cui, H. Schwarz, et al., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicology In Vitro, 2006, 20: 1202-1212.

[188]

D. Cui, Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci and Nanotechnology, 2007, 7: 1298-1314.

Nano Biomedicine and Engineering
Pages 144-160
Cite this article:
Tavakolifard S, Biazar E. Modification of Carbon Nanotubes as an Effective Solution for Cancer Therapy. Nano Biomedicine and Engineering, 2016, 8(3): 144-160. https://doi.org/10.5101/nbe.v8i3.p144-160

412

Views

10

Downloads

8

Crossref

10

Scopus

Altmetrics

Received: 13 July 2016
Accepted: 07 September 2016
Published: 15 September 2016
© 2016 Sara Tavakolifard, Esmaeil Biazar.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return