AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

New Developments of Gastric Cancer Biomarker Research

Hualin Fu1,2( )
Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
Show Author Information

Abstract

Gastric cancer is a deadly disease with high incidence and mortality rate in China. Early detection and treatment of gastric cancer showed significantly better 5-year survival rate. Conventional screening methods of gastric cancer include barium meal or endoscopic screening. There is a great need to find new biomarkers of gastric cancer for simpler, faster, and non-invasive screening of gastric cancer. A large array of molecules such as protein markers, metabolite markers, RNA markers, breath organic molecules have been identified as potential markers of gastric screening. Among them, pepsinogens and gastrin-17 have been applied in large scale of population screening. New species of metabolite markers, microRNA markers and breath molecules may further enhance the simplicity, sensitivity and specificity of gastric cancer screening.

References

[1]

R. Zheng, S. Zhang, and L. Wu, Report of Incidence and Mortality from China Cancer Registries in 2008. China Cancer, 2012, 21(1): 1-12.

[2]
N. Howlader, A.M. Noone, M. Krapcho, et al. (eds), SEER cancer statistics review, 1975-2011. National Cancer Institute. Bethesda, 2014.
[3]

J.M. Kang, N. Kim, J.Y. Yoo, et al., The role of serum pepsinogen and gastrin test for the detection of gastric cancer in Korea. Helicobacter, 2008, 13(2): 146-156.

[4]

N. Kim, H.C. Jung, The role of serum pepsinogen in the detection of gastric cancer. Gut Liver, 2010, 4(3): 307-319.

[5]

J.S. Edkins, The chemical mechanism of gastric secretion. J Physiol, 1906, 34(1-2): 133-144.

[6]

R. Kikuchi, Y. Abe, K. Iijima, et al., et al., Low serum levels of pepsinogen and gastrin 17 are predictive of extensive gastric atrophy with high-risk of early gastric cancer. Tohoku J Exp Med, 2011, 223(1): 35-44.

[7]

M. Kaise, J. Miwa, A. Fujimoto, et al., Influence of Helicobacter pylori status and eradication on the serum levels of trefoil factors and pepsinogen test: serum trefoil factor 3 is a stable biomarker. Gastric Cancer, 2013, 16(3): 329-337.

[8]

M. Kaise, J. Miwa, J. Tashiro, et al., The combination of serum trefoil factor 3 and pepsinogen testing is a valid non-endoscopic biomarker for predicting the presence of gastric cancer: a new marker for gastric cancer risk. J Gastroenterol, 2011, 46(6): 736-745.

[9]

S. Kikuchi, Y. Abe, K. Iijima, K. et al., Association between infections with CagA-positive or -negative strains of Helicobacter pylori and risk for gastric cancer in young adults. Research Group on Prevention of Gastric Carcinoma Among Young Adults. Am J Gastroenterol, 1999, 94(12): 3455-3459.

[10]

K. Miki, Gastric cancer screening by combined assay for serum anti-Helicobacter pylori IgG antibody and serum pepsinogen levels - "ABC method". Proc Jpn Acad Ser B Phys Biol Sci, 2011, 87(7): 405-414.

[11]

S. Shiota, O. Matsunari, M. Watada, et al., Serum Helicobacter pylori CagA antibody as a biomarker for gastric cancer in east-Asian countries. Future Microbiol, 2010, 5(12): 1885-1893.

[12]

J. Parsonnet, G.D. Friedman, N. Orentreich, et al., Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 1997, 40(3): 297-301.

[13]

K. Sugiu, T. Kamada, M. Ito, et al., Anti-parietal cell antibody and serum pepsinogen assessment in screening for gastric carcinoma. Dig Liver Dis, 2006, 38(5): 303-307.

[14]

G.I. Hwang, H.Y. Chang, H.S. Byung, et al., Predictive value of preoperative serum CEA, CA19-9 and CA125 levels for peritoneal metastasis in patients with gastric carcinoma. Cancer Res Treat, 2004, 36(3): 178-181.

[15]

J. Schneider, G. Schulze, Comparison of tumor M2-pyruvate kinase (tumor M2-PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Res, 2003, 23(6D): 5089-5093.

[16]

H.J. Lin, Y.H. Hsieh, W.L. Fang, et al., Clinical manifestations in patients with alpha-fetoprotein-producing gastric cancer. Curr Oncol, 2014, 21(3): e394-e399.

[17]

X. Liu, W. Sheng, and Y. Wang, An analysis of clinicopathological features and prognosis by comparing hepatoid adenocarcinoma of the stomach with AFP-producing gastric cancer. J Surg Oncol, 2012, 106(3): 299-303.

[18]

Y. Kumar, N. Tapuria, N. Kirmani, et al., Tumour M2-pyruvate kinase: a gastrointestinal cancer marker. Eur J Gastroenterol Hepatol, 2007, 19(3): 265-276.

[19]

D.-C. Chan, C.-J. Chen, H.-C. Chu,, et al., Evaluation of serum amyloid A as a biomarker for gastric cancer. Ann Surg Oncol, 2007, 14(1): 84-93.

[20]

S.A. Moshkovskii, Why do cancer cells produce serum amyloid A acute-phase protein? Biochemistry (Mosc), 2012, 77(4): 339-341.

[21]

F. Tas, S. Karabulut, M. Serilmez, et al., Serum levels of macrophage migration-inhibitory factor (MIF) have diagnostic, predictive and prognostic roles in epithelial ovarian cancer patients. Tumour Biol, 2014, 35(4): 3327-3331.

[22]

H.H. Xia, Y. Yang, K.M. Chu, et al., Serum macrophage migration-inhibitory factor as a diagnostic and prognostic biomarker for gastric cancer. Cancer, 2009, 115(23): 5441-5449.

[23]

L.G. Capelle, A.C. de Vries, J. Haringsma, et al., Serum levels of leptin as marker for patients at high risk of gastric cancer. Helicobacter, 2009, 14(6): 596-604.

[24]

C. Gao, R. Xie, C. Ren, et al., Dickkopf-1 expression is a novel prognostic marker for gastric cancer. J Biomed Biotechnol, 2012, 2012: 804592.

[25]

H.S. Lee, H.E. Lee, D.J. Park, et al., Clinical significance of serum and tissue Dickkopf-1 levels in patients with gastric cancer. Clin Chim Acta, 2012, 413(21-22): 1753-1760.

[26]

L. Yu, L. Wang, and S. Chen, Olfactomedin 4, a novel marker for the differentiation and progression of gastrointestinal cancers. Neoplasma, 2011, 58(1): 9-13.

[27]

M.A. Kaplan, M. Kucukoner, A. Inal, et al., Relationship between serum soluble vascular adhesion protein-1 level and gastric cancer prognosis. Oncol Res Treat, 2014, 37(6): 340-344.

[28]

H. Yasuda, Y. Toiyama, M. Ohi, et al., Serum soluble vascular adhesion protein-1 is a valuable prognostic marker in gastric cancer. J Surg Oncol, 2011, 103(7): 695-699.

[29]

N. Harbeck, M. Schmitt, M. Vetter, et al., Prospective Biomarker Trials Chemo N0 and NNBC-3 Europe Validate the Clinical Utility of Invasion Markers uPA and PAI-1 in Node-Negative Breast Cancer. Breast Care (Basel), 2008. 3(s2): 11-15.

[30]

L. Herszenyi, G. Istvan, R. Cardin, et al., Serum cathepsin B and plasma urokinase-type plasminogen activator levels in gastrointestinal tract cancers. European Journal of Cancer Prevention, 2008, 17(5): 438-445.

[31]

M.P. Ebert, S. Kruger, M.L. Fogeron, et al., Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics, 2005, 5(6): 1693-1704.

[32]

T. Hirano, H. Yoshioka, Serum cathepsin B levels, urinary excretion of cathepsin B and tissue cathepsin B content in the patients with gastric cancer. Nihon Geka Hokan, 1993, 62(5): 217-221.

[33]

H. Umemura, A. Togawa, K. Sogawa, et al., Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis. J Gastroenterol, 2011. 46(5): 577-585.

[34]

K. Shimizu, Y. Ueda, and H. Yamagishi, Titration of serum p53 antibodies in patients with gastric cancer: a single-institute study of 40 patients. Gastric Cancer, 2005, 8(4): 214-219.

[35]

A. Suppiah, J. Greenman, Clinical utility of anti-p53 auto-antibody: systematic review and focus on colorectal cancer. World J Gastroenterol, 2013, 19(29): 4651-4670.

[36]

T. Abe, M. Fukumoto, K. Tsuchiya, et al., Human monoclonal antibodies against cytokeratin 18 generated from patients with gastric cancer. Jpn J Cancer Res, 1989, 80(3): 271-276.

[37]

C. Caulin, G.S. Salvesen, and R.G. Oshima, Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol, 1997, 138(6): 1379-1394.

[38]

K. Oyama, S. Fushida, J. Kinoshita, et al., Serum cytokeratin 18 as a biomarker for gastric cancer. Clin Exp Med, 2013. 13(4): 289-295.

[39]

Y. Mitani, N. Oue, S. Matsumura, et al., Reg IV is a serum biomarker for gastric cancer patients and predicts response to 5-fluorouracil-based chemotherapy. Oncogene, 2007, 26(30): 4383-4393.

[40]

Y. Hao, Y. Yu, L. Wang, et al., IPO-38 is identified as a novel serum biomarker of gastric cancer based on clinical proteomics technology. J Proteome Res, 2008, 7(9): 3668-3677.

[41]

J. Zhang, K. Zhang, X. Jiang, et al., S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer. Dig Dis Sci, 2014, 59(9): 2136-2144.

[42]

M.P. Ebert, S. Lamer, J. Meuer, et al., Identification of the thrombin light chain a as the single best mass for differentiation of gastric cancer patients from individuals with dyspepsia by proteome analysis. J Proteome Res, 2005, 4(2): 586-590.

[43]

M.P. Ebert, D. Niemeyer, S.O. Deininger, et al., Identification and confirmation of increased fibrinopeptide a serum protein levels in gastric cancer sera by magnet bead assisted MALDI-TOF mass spectrometry. J Proteome Res, 2006, 5(9): 2152-2158.

[44]

A. Sagripanti, A. Carpi, M. Ferdeghini, et al., The measurement of plasma fibrinopeptide A in breast cancer patients. Rays, 1987, 12(2): 65-69, 107-109.

[45]

T. Yoshinaga, T. Shigemitsu, H. Nishimata, et al., Angiopoietin-like protein 2 is a potential biomarker for gastric cancer. Mol Med Rep, 2015, 11(4): 2653-2658.

[46]

Y. Toiyama, K. Tanaka, T. Kitajima, et al., Serum angiopoietin-like protein 2 as a potential biomarker for diagnosis, early recurrence and prognosis in gastric cancer patients. Carcinogenesis, 2015. 36(12): 1474-1483.

[47]

T. Shimura, Y. Toiyama, K. Tanaka, et al., Angiopoietin-like Protein 2 as a Predictor of Early Recurrence in Patients After Curative Surgery for Gastric Cancer. Anticancer Res, 2015, 35(9): 4633-4639.

[48]

J. Jarvisalo, M. Hakama, P. Knekt, et al., Serum tumor markers CEA, CA 50, TATI, and NSE in lung cancer screening. Cancer, 1993, 71(6): 1982-1988.

[49]

B.L. Strom, G. Maislin, S.L. West, et al., Serum CEA and CA 19-9: potential future diagnostic or screening tests for gallbladder cancer? Int J Cancer, 1990, 45(5): 821-824.

[50]

S. Alberico, M.C. Facca, R. Millo, et al., Tumoral markers (CA 125-CEA) in the screening of ovarian cancer. Eur J Gynaecol Oncol, 1988. 9(6): 485-489.

[51]

Y.C. Kim, J.H. Kim, D.Y. Cheung, et al., The Usefulness of a Novel Screening Kit for Colorectal Cancer Using the Immunochromatographic Fecal Tumor M2 Pyruvate Kinase Test. Gut Liver, 2015, 9(5): 641-648.

[52]

C. Tonus, M. Sellinger, K. Koss, et al., Faecal pyruvate kinase isoenzyme type M2 for colorectal cancer screening: a meta-analysis. World J Gastroenterol, 2012, 18(30): 4004-4011.

[53]

M. Abdullah, A.A. Rani, M. Simadibrata, et al., The value of fecal tumor M2 pyruvate kinase as a diagnostic tool for colorectal cancer screening. Acta Med Indones, 2012, 44(2): 94-99.

[54]

W. Meng, H.H. Zhu, Z.F. Xu, et al., Serum M2-pyruvate kinase: A promising non-invasive biomarker for colorectal cancer mass screening. World J Gastrointest Oncol, 2012, 4(6): 145-151.

[55]

M. Iwamuro, Y. Kawai, T. Matsumoto, et al., Serum anti-p53 antibody as a tumour marker for colorectal cancer screening. Ecancermedicalscience, 2015, 9: 560.

[56]

C. Ausch, V. Buxhofer-Ausch, U. Olszewski, et al., Caspase-cleaved cytokeratin 18 fragment (M30) as marker of postoperative residual tumor load in colon cancer patients. Eur J Surg Oncol, 2009, 35(11): 1164-1168.

[57]

M. Ramazan Sekeroglu, S. Aydin, H. Dulger, et al., Diagnostic value of cytokeratin-18 as a tumor marker in bladder cancer. Clin Biochem, 2002, 35(4): 327-331.

[58]

F. Kitahara, K. Kobayashi, T. Sato, et al., Accuracy of screening for gastric cancer using serum pepsinogen concentrations. Gut, 1999, 44(5): 693-697.

[59]

M.V. Liberti, J.W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci, 2016, 41(3): 211-218.

[60]

A. Hirayama, K. Kami, M. Sugimoto, et al., Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res, 2009, 69(11): 4918-4925.

[61]

N. Abbassi-Ghadi, S. Kumar, J. Huang, et al., Metabolomic profiling of oesophago-gastric cancer: a systematic review. Eur J Cancer, 2013, 49(17): 3625-3637.

[62]

M. Meuth, The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp Cell Res, 1989, 181(2): 305-316.

[63]

L. Chang, R. Guo, Q. Huang, et al., Chromosomal instability triggered by Rrm2b loss leads to IL-6 secretion and plasmacytic neoplasms. Cell Reports, 2013, 3(5): 1389-1397.

[64]

G. Weinberg, B. Ullman, and D.W. Martin, Jr., Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(4): 2447-2451.

[65]

E. Rysman, K. Brusselmans, K. Scheys, et al., De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res, 2010, 70(20): 8117-8126.

[66]

F.P. Kuhajda, K. Jenner, F.D. Wood, et al., Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(14): 6379-6383.

[67]

Q. Qu, F. Zeng, X. Liu, et al., Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis, 2016, 7: e2226.

[68]

L. Yu, J. Aa, J. Xu, et al., Metabolomic phenotype of gastric cancer and precancerous stages based on gas chromatography time-of-flight mass spectrometry. J Gastroenterol Hepatol, 2011, 26(8): 1290-1297.

[69]

S. Kumar, J. Huang, J.R. Cushnir, et al., Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer. Anal Chem, 2012, 84(21): 9550-9557.

[70]

C. Jin, W. Shi, F. Wang, et al., Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget, 2016.

[71]

Y. Zhao, Q. Guo, J. Chen, et al., Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep, 2014, 31(1): 358-364.

[72]

J.S. Chen, Y.F. Wang, X.Q. Zhang, et al., H19 serves as a diagnostic biomarker and up-regulation of H19 expression contributes to poor prognosis in patients with gastric cancer. Neoplasma, 2016, 63(2): 223-230.

[73]

X. Zhou, C. Yin, Y. Dang, et al., Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep, 2015, 5: 11516.

[74]

H. Li, B. Yu, J. Li, et al., Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget, 2014, 5(8): 2318-2329.

[75]

E.B. Zhang, L. Han, D.D. Yin, et al., c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol, 2014, 31(5): 914.

[76]

H. Liu, L. Zhu, B. Liu, et al., Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett, 2012, 316(2): 196-203.

[77]

J. Song, Z. Bai, J. Zhang, et al., Serum microRNA-21 levels are related to tumor size in gastric cancer patients but cannot predict prognosis. Oncol Lett, 2013, 6(6): 1733-1737.

[78]

Y.H. Shen, Z.B. Xie, A.M. Yue, et al., Expression level of microRNA-195 in the serum of patients with gastric cancer and its relationship with the clinicopathological staging of the cancer. Eur Rev Med Pharmacol Sci, 2016, 20(7): 1283-1287.

[79]

C.G. Hou, X.Y. Luo, and G. Li, Diagnostic and Prognostic Value of Serum MicroRNA-206 in Patients with Gastric Cancer. Cell Physiol Biochem, 2016, 39(4): 1512-1520.

[80]

J. Zhang, Y. Song, C. Zhang, et al., Circulating MiR-16-5p and MiR-19b-3p as Two Novel Potential Biomarkers to Indicate Progression of Gastric Cancer. Theranostics, 2015, 5(7): 733-745.

[81]

V.Y. Shin, E.K. Ng, V.W. Chan, et al., A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol Cancer, 2015, 14: 202.

[82]

J. Song, Z. Bai, W. Han, et al., Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci, 2012, 57(4): 897-904.

[83]

S. Kumar, J. Huang, N. Abbassi-Ghadi, et al., Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem, 2013, 85(12): 6121-6128.

[84]

H. Amal, M. Leja, K. Funka, et al., Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut, 2016. 65(3): 400-407.

[85]

Z.Q. Xu, Y.Y. Broza, R. Ionsecu, et al., A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer, 2013, 108(4): 941-950.

[86]

Y. Chen, Y. Zhang, F. Pan, et al., Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons. ACS Nano, 2016.

Nano Biomedicine and Engineering
Pages 268-273
Cite this article:
Fu H. New Developments of Gastric Cancer Biomarker Research. Nano Biomedicine and Engineering, 2016, 8(4): 268-273. https://doi.org/10.5101/nbe.v8i4.p268-273

454

Views

15

Downloads

4

Crossref

6

Scopus

Altmetrics

Received: 27 September 2016
Accepted: 18 November 2016
Published: 06 December 2016
© 2016 Hualin Fu.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return