AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Microfluidic Electrochemical Detection Techniques of Cancer Biomarkers

Yao XieDi Chen( )Shujing Lin
Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Intelligent Diagnosis and Treatment Instrument Engineering Technology Research Center, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Abstract

Microfluidic electrochemical sensors are based on the immune response. Immune charge density or electrode potential and other parameters sensitive interface causes a change or cause a power solution of the active ingredient (or their related components) to generate or consume, causing the detected current or potential. The electrochemical parameters of the law of changing enable the immune proteins quantitative or qualitative detection. Since the immune protein molecules themselves are typically non-electrochemical activity, and therefore immune electrochemical sensor usually mark the electrically active substance or enzyme in the antigen or antibody molecules in solution antigen (antibody) immune response and by the immobilized antigen (antibody) the concentration of the sample antigen (antibody) after the change of the current signal, causing the electro-active substance or enzyme-catalyzed reaction of substrate reaction can be determined indirectly.

References

[1]

N.Y. Shih, H.L. Lai, G.C. Chang, et al., Anti-α-enolase autoantibodies are down-regulated in advanced cancer patients. Aticle title. Jpn J Clin Oncol., 2010, 40: 663-669.

[2]

T. Szarvas, M. Becker, F. Vom Dorp, et al., Matrix metalloproteinase-7 as a marker of metastasis and predictor of poor survival in bladder cancer. Cancer Sci., 2010, 101: 1300-1308.

[3]

I.E, Tothill, Biosensors for cancer markers diagnosis. Seminars in Cell & Developmental Biology, 2009, 20: 55-62.

[4]

B. Breyer, F.J. Radcliff. Polarographic investigation of the antigen antibody reaction. Nature, 1951, 167: 79-79.

[5]

C.B. Andrew, D. Frank, P.J. Séamus, Labeless immunosensor assay for prostate specific antigen with pictogram per milliliter limits of detection based upon an ac impedance protocol. Anal. Chem, 2008, 80: 6198-6205.

[6]

D.X. Cui, L. Zhang, X.J. Yan, et al., A microarray-based gastric carcinoma prewarning system. World J Gastroenterol, 2005, 11(9): 1273-1282.

[7]

D.X. Cui, et al., Present situation and development prospects of nano-tumor diagnosis and treatment technologies. Chinese Journal of Cancer Biotherapy, 2008, 15(5): 401-406.

[8]

R. Siegel, D. Naishadham, Cancer statistics, CA Cancer J Clin., 2012, 62(1): 10-29.

[9]

W. Zhang, Y.B. Xiang, Z.W. Liu, et al., Trends analysis of common urologic neoplasm incidence of elderly people in Shangha. Cancer, 2004, 23(5): 555-558.

[10]

M. Babjuk, M. Burger, R. Zigeuner, et al., EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol.2013, 64(4): 639-653.

[11]

R.F. Youssef, Y. Lotan, Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer. Scientific World Journal, 2011, 11: 369-381.

[12]

K.D. Sievert, B. Amend, U. Nagele, et al., Economic aspects of bladder cancer: what are the benefits and costs? World J Urol., 2009, 27(3): 295-300.

[13]

A.B. Mariotto, K.R. Yabroff, Y. Shao, et al., Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst., 2011, 103(2): 117-128.

[14]

J.A. Ho, Y.C. Lin. L.S. Wang, et al., Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal. Chem.,2009, 81: 1340-1346.

[15]

M.A. Bangar, D.J. Shirale, W. Chen, et al., Single conducting polymer nanowire chemiresistive lable-free immunosensor for cancer biomarker. Anal. Chem., 2009, 81: 2168-2175.

[16]

A. Warsinke, A. Benkert, F.W. Scheller, et al., Electrochemical immunoassays. Anal. Chem., 2000, 366: 622-634.

[17]

G.F. Jie, J.J. Zhang, D.C. Wang, et al., Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. Anal. Chem., 2008, 80(11): 4033-4039.

[18]

D. Tang, R. Yuan, and Y. Chai, Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal. Chem., 2008, 80: 1582-1588.

[19]

B.C. Lin, Microfluidic chip laboratory and functional. China Pharmaceutical University, 2003, 34(1): 1-6.

[20]

B.C. Lin, J.H. Qin, Microfluidic lab on a chip. Chromatography, 2005, 23(5): 456-463.

[21]

T. Thorsen, S.J. Maerkl, and S.R. Quake, Microfluidic large-scale integration. Science, 2002, 298(5593): 580-584.

[22]

C.T. Lim, Y. Zhang, Beas-based microfluidic immunoassays: The next generation. Biosens. Bioelectron, 2007, 22: 1197-1204.

[23]

A. Bange, B.H. Halsall, W.R. Heineman, Microfluidic immunosensor systems. Biosens. Bioelectron., 2005, 20: 2488-2503.

[24]

A. Bhattacharyya, C.M. Klapperich, Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed. Microdevices, 2007, 9: 245-251.

[25]

K. Sato, M. Tokeshi, T. Odake, et al., Integration of an immunosorbent assay system : analysis of secretory human immunoglobilin A on polystyrene beads in a microchip. Anal. Chem., 2000, 72: 1144-1147.

[26]

K. Sato, M. Tokeshi, H. Kimura, et al., Determination of carcinoembryonic antigen in human sera by integrated bead bed immunoassay in a microchip for cancer diagnosis. Anal. Chem., 2001, 73: 1213-1218.

[27]

K. Sato, M. Yamanaka, H. Takahashi, et al., Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis., 2002, 23: 734-739.

[28]

W.R. Vandaveer, S.A. Pasas-Farmer, D.J. Fischer, et al., Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis., 2004, 25: 3528-3549.

[29]

L.B. Koutny, D. Schmalzing, T.A. Taylor, et al., Microchip electrophpretic immunoassay for serun cortisol. Anal. Chem., 1996, 68: 18-22.

[30]

N. Chiem, D.J. Harrison, Microchip-based capillary electrophoresis for immunoassays : analysis of monoclonal antibodies and thephylline. Anal. Chem., 1997, 69: 373-378.

[31]

C. Leng, X.Q. Zhang, H.X. Ju. Microfluidic chip-based immunoassay. Prog Chem., 2009, 21: 688-695.

[32]

A.J. Haes, A. Terray, G.E. Collins, Bead-assisted displacement immunoassay for staphylococcal enterotxin B on a microchip. Anal. Chem., 2006, 78: 8412-8420.

[33]

K.S. Shin, S.W. Lee, K.C. Han, et al., Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens. Bioelectron., 2007, 22: 2261-2267.

[34]

T. Yasukawa, M. Suzuki, T. Sekiya, et al., Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens. Bioelectron., 2007, 22: 2730-2736.

[35]

M.A. Hayes, N.A. Polson, A.N. Phayre, et al., Flow-based microimmunoassay. Anal. Chem., 2001, 73: 5896-5902.

[36]

J.W. Choi, C.H. Ahn, S. Bhansali, et al., A new magnetic bead-based, filterless bio-separator with planar electromagnet surfces for integrated bio-detection systems. Sens. Actuators B., 2000, 68: 34-39.

[37]

K.S. Kim, J.K. Park, Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparicles in microfluidic channel. Lab Chip, 2005, 5: 657-664.

[38]

S. Farrell, N.J.R. Matsuno, H.B. Halsall, et al., Bead-based immunoassays with microelectrode detection. Anal. Bioanal. Chem., 2004, 379: 358-367.

[39]

Y. Liu, H. Wang, J. Huang, et al., Analysis of bioactive ingredients in the brown alga fucus vesiculosus by capillary electrophoresis and neutron activation analysis. Anal. Chim. Acta., 2009, 650: 77-82.

[40]

A. Dodge, K. Fluri, E. Verpoorte, et al., Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal.Chem., 2001, 73: 3400-3409.

[41]

E. Eteshola, D. Leckband, Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens.Actuators B, 2001, 72: 129-133.

[42]

Y. Jang, S.Y. Oh, J.K. Park. In situ electrochemical enzyme immunoassay on a microchip with surface-functionalized poly(dimethylsiloxane) chanel. Enzyme Microb. Technol., 2006, 39: 1122-1128.

[43]

C. Yang, C. Zhao, L. Wold, et al., Biocompatibility of a physiological pressure sensor. Biosens. Bioelectron., 2003, 19: 51-58.

[44]

C.B. Cohen, E.C. Dixon, S. Jeong, et al., A microchip-based enzyme assay for protein kinase A. Anal. Biochem., 1999, 273: 89-97.

[45]

K. Hosokawa, M. Omata, K. Sato, et al., Power-free sequential injection for microchip immunoassay toward point-of care testing. Lab Chip., 2006, 6: 236-241.

[46]

J.S. Rossier, H.H. Girault, Enzyme linked immunosorbent assay on a microchip with electrochemical detection. Lab Chip, 2001, 1: 153-157.

[47]

Z.P. Aguilar, W.R. Vandaveer, I. Fritsch, Enzyme linked immunosorbent assay on a microchip with electrochemical detection. Anal. Chem., 2002, 74: 3321-3329.

[48]

H. Dong, C.M. Li, Q. Zhou, et al., Sensitive electrochemical enzyme immunoassay microdeviced based on architecture of dual ring electrodes with sensing cavity chamber. Biosens. Bioelectron., 2006, 22: 621-626.

[49]

H. Dong, C.M. Li, Y.F. Zhang, et al., Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip., 2007, 7: 1752-1758.

[50]

N. Nashida, W. Satoh, J. Fukuda, et al., Electrochemical immunoassay on a microfluidic device with sequential injection and flushing function. Biosens. Bioelectron., 2007, 22: 3167-3173.

[51]

S. Zhang, W.J. Cao, M. Li. MCE enzyme immunoassay for carcinoembryonic antigen and alpha-fetoprotein using electrochemical detection. Electrophoresis., 2009, 30: 3427.

[52]

O.Y. Henry, A. Fragoso, V. Beni, et al., Design and testing of a packaged microfluidic cell for the multiplexed electrochemical detection of cancer markers. Electrophoresis., 2009, 30: 3398-3403.

[53]

Y.J. Ko, J.H. Maeng, Y. Ahn, et al., Microchip-based multiplex electro-immunosensing system for the detection of cancer biomarkers. Electrophoresis., 2008, 29: 3466-3476.

[54]

J.D. Chen, D. Chen, Y. Xie, et al., Microfluidic chips for cells capture using 3-D hydrodynamic structure array. Microsyst Technol., 2014, 20: 485-491.

[55]

J. D. Chen, D. Chen, Y. Xie, et al., A microfluidic chip for rapid and direct trapping white blood cells from whole blood. Biomicrofluidics., 2013, 7: 034106.

[56]

J.S. Rossier, S. Baranek, P. Morier, et al., GRAVI-chip : Automation of microfluidics affinity assay based on magnetic nanoparticle. J. Assoc. Lab. Automat., 2008, 13: 322.

Nano Biomedicine and Engineering
Pages 57-71
Cite this article:
Xie Y, Chen D, Lin S. Microfluidic Electrochemical Detection Techniques of Cancer Biomarkers. Nano Biomedicine and Engineering, 2017, 9(1): 57-71. https://doi.org/10.5101/nbe.v9i1.p57-71

310

Views

9

Downloads

2

Crossref

3

Scopus

Altmetrics

Received: 11 January 2017
Accepted: 28 February 2017
Published: 29 March 2017
© 2017 Yao Xie, Di Chen, and Shujing Lin.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return