AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access | Online First

Ultrasonic vibration-assisted micro-milling: A comprehensive review

Sami ULLAHaZhiqiang LIANGa,b,c( )Yuchao DUa( )Zhipeng SUaCheng GUOdZhen YINeHaofei GUOa,bYoomi KIMaTianfeng ZHOUa,bXibin WANGa
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
Shenzhen University, Shenzhen 518060, China
Suzhou University of Science and Technology, Suzhou 215009, China
Show Author Information

Abstract

Mechanical micro-milling has become a prominent micromachining technique in recent years, and it has advanced high machining efficiency and precision. The advantages of versatility, utility, cost-effectiveness, and efficiency make it suitable for varied industries such as biomedicine, electronics, aerospace, and aviation. However, Conventional Micro-Milling (CMM) faces difficulties, particularly in dealing with difficult-to-cut materials. To solve the above problems, Ultrasonic Vibration-Assisted Micro-Milling (UVAMM) is proposed, which can efficiently address the challenges of machining difficult-to-cut materials. UVAMM is able to inhibit chip formation and reduce the intense friction between the flank surface of the tool and the machined surface. What’s more, it can reduce cutting forces, cutting temperature, and residual stress on the workpiece surface. Finally, it leads to an enhancement in the finished surface quality of difficult-to-cut materials, maximizing the overall machining performance. This paper reviewed UVAMM processing, such as mathematical modeling, chip formation, burr formation, tool wear, cutting forces, cutting temperature, and surface morphology. Furthermore, the finite element simulation of UVAMM and the significance of Minimum Quantity Lubrication (MQL) in UVAMM are discussed. At the end, advantages of UVAMM for difficult-to-cut materials such as titanium alloys, steel alloys, nickel-based alloys, aluminum alloys, composites, brass, and optical glass are summarized.

References

1

Wu X, Li L, He N. Investigation on the burr formation mechanism in micro cutting. Precis Eng. 2017;47:191-196.

2

Masato D, Sorgato M, Parenti P, et al. Impact of deep cores surface topography generated by micro milling on the demolding force in micro injection molding. J Mater Process Tech. 2017;246:211-223.

3

Cheng X, Nakamoto K, Sugai M, et al. Manufacturing Technology Development of ultra-precision machining system with unique wire EDM tool fabrication system for micro / nano-machining. CIRP Ann. 2008; 57:415-420.

4

Cheng X, Wang ZG, Nakamoto K, et al. Design and development of a micro polycrystalline diamond ball end mill for micro/nano freeform machining of hard and brittle materials. J Micromechanics Microengineering. 2009;19(11).

5

Suzuki H, Moriwaki T, Yamamoto Y, et al. Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Ann - Manuf Technol. 2007;56(1):131-134.

6

Zhang Z, Peng H, Yan J. Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools. Int J Mach Tools Manuf. 2013;65:99-106.

7
Heaney PJ, Sumant A V, Torres CD, et al. Diamond coatings for micro end mills: Enabling the dry machining of aluminum at the micro-scale. Diam Relat Mater. 2008;17: 223-233.
8

Cai Y, Liu Z, Shi Z, et al. Optimum end milling tool path and machining parameters for micro Laval nozzle manufacturing. J Eng Manuf. 2015;(1-10).

9

Liang Z, Gao P, Wang X, et al. Cutting performance of different coated micro end mills in machining of Ti-6Al-4V. Micromachines. 2018;9 (11):568.

10

Alhadeff LL, Marshall MB, Curtis DT, et al. Protocol for tool wear measurement in micro-milling. Wear. 2019;420-421(November 2018): 54-67.

11

Vipindas K, Kuriachen B, Mathew J. Investigations into the effect of process parameters on surface roughness and burr formation during micro end milling of TI-6AL-4V. Int J Adv Manuf Technol. 2019;100(5-8):1207-1222.

12

Kim GD, Loh BG. An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics. J Mater Process Technol. 2007; 190(1-3): 181-188.

13

Weng F, Liu Y, Chew Y, et al. IN100 Ni-based superalloy fabricated by micro-laser aided additive manufacturing: Correlation of the microstructure and fracture mechanism. Mater Sci Eng A. 2020;788:139467.

14

Allegre OJ, Li Z, Li L. Tailored laser vector fields for high-precision micro-manufacturing. CIRP Ann. 2019;68(1):193-196.

15

Cadot GBJ, Axinte DA, Billingham J. Continuous trench, pulsed laser ablation for micro-machining applications. Int J Mach Tools Manuf. 2016;107:8-20.

16

Derevyanko DI, Shelkovnikov VV, Orlova NA, et al. Fabrication of High-aspect-ratio Microstructures for LIGA-technology by Sinchrotron Radiation Polymerisation of Thetetraacrylate Monomer. Phys Procedia. 2017;86(June 2015):122-126.

17

Ma Y, Liu W, Liu C. Research on the process of fabricating a multilayer metal micro-structure based on UV-LIGA overlay technology. Nanotechnol Precis Eng. 2019;2(2):83-88.

18

Hamdana G, Puranto P, Langfahl-Klabes J, et al. Nanoindentation of crystalline silicon pillars fabricated by soft UV nanoimprint lithography and cryogenic deep reactive ion etching. Sensors Actuators, A Phys. 2018;283:65-78.

19

Bogaerts W, Dumon P, Taillaert D, et al. SOI nanophotonic waveguide structures fabricated with deep UV lithography. Photonics Nanostructures - Fundam Appl. 2004;2(2):81-86.

20

Wang K, Zhang Q, Zhang J. Evaluation of scale effect of micro electrical discharge machining system. J Manuf Process. 2019;38(November 2017):174-178.

21

Kim YS, Chu CN. The Effects of graphite powder on tool wear in micro electrical discharge machining. Procedia CIRP. 2018; 68(April): 553-558.

22

Kuzin V V, Fedorov SY, Szalay T, et al. Micromachining of a highdensity current-conducting ceramic with the use of electrical-discharge machining. Part 2. Refract Ind Ceram. 2016;57(3):283-287.

23

Silvestre CM, Nguyen V, Jansen H, et al. Deep reactive ion etching of ‘grass-free’widely-spaced periodic 2D arrays, using sacrificial structures. Microelectron Eng. 2020;223:111228.

24

Li Y, Zhang H, Yang R, et al. In-plane silicon microneedles with open capillary microfluidic networks by deep reactive ion etching and sacrificial layer based sharpening. Sensors Actuators, A Phys. 2019; 292: 149-157.

25

Sahoo P, Patra K, Szalay T, et al. Determination of minimum uncut chip thickness and size effects in micro-milling of P-20 die steel using surface quality and process signal parameters. Int J Adv Manuf Technol. 2020;106(11-12):4675-4691.

26

Ren Y, Li C, Li W, et al. Study on micro-grinding quality in microgrinding tool for single crystal silicon. J Manuf Process. 2019; 42 (May):246-256.

27

Leo Kumar SP. Measurement and uncertainty analysis of surface roughness and material removal rate in micro turning operation and process parameters optimization. Meas J Int Meas Confed. 2019;140: 538-547.

28

Suresh N, Ganesh S, Jagadesh T. Investigations into edge radius and point angle on energy consumption during micro drilling of titanium alloy. Mater Today Proc. 2019;26:586-591.

29

Liao Z, Axinte DA. On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission. J Mater Process Technol. 2016;229:82-93.

30

Brehl DE, Dow TA. Review of vibration-assisted machining. Precis Eng. 2008;32(3):153-172.

31

Babitsky VI, Kalashnikov AN, Meadows A, et al. Ultrasonically assisted turning of aviation materials. J Mater Process Technol. 2003;132(1-3):157-167.

32

Suárez A, Veiga F, de Lacalle LNL, et al. Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718. J Mater Eng Perform. 2016;25(11):5076-5086.

33
BIE Wenbo, Bo Z, Fan C, et al. Progress of ultrasonic vibration-assisted machining surface micro-texture and serviceability. Diam Abrasives Eng Aug. 2023;43(No. 4).
34

Chern GL, Chang YC. Using two-dimensional vibration cutting for micro-milling. Int J Mach Tools Manuf. 2006;46(6):659-666.

35

Chen W, Teng X, Zheng L, et al. Burr reduction mechanism in vibration-assisted micro milling. Manuf Lett. 2018;16:6-9.

36

Li KM, Wang SL. Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proc Inst Mech Eng Part B J Eng Manuf. 2014;228(6): 847-855.

37

Lian H, Guo Z, Huang Z, et al. Experimental research of Al6061 on ultrasonic vibration assisted micro-milling. Procedia CIRP. 2013;6:561-564.

38

Ibrahim R, Rahim EA, Ibrahim AA, et al. The effect on the application of coolant and Ultrasonic Vibration Assisted Micro Milling on machining performance. Applied Mechanics and Materials 2014;660:65-69.

39

Mokhtari A, Jalili MM, Mazidi A, Abootorabi MM. European Journal of Mechanics / A Solids Size dependent vibration analysis of micromilling operations with process damping and structural nonlinearities. Eur J Mech / A Solids. 2019;76(August 2018):57-69.

40

Yan Y, Jiang C, Yan H. Probabilistic model of the surface residual height under longitudinal ‑ torsional ultrasonic vibration assisted micro ‑ milling TC4. Int J Adv Manuf Technol. 2024;131(5-6):2837-2855.

41

Özel T, Olleak A, Thepsonthi T. Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng. 2017;11(4-5):435-444.

42

Teng X, Huo D, Shyha I, et al. An experimental study on tool wear behaviour in micro milling of nano Mg / Ti metal matrix composites. International Journal of Advanced Manufacturing Technology 2018: 2127-2140.

43

Xu LH, Na HB, Han GC. Machinablity improvement with ultrasonic vibration-assisted micro-milling. Adv Mech Eng. 2018;10(12):1-12.

44

Huo D, Lin C, Choong ZJ, et al. Surface and subsurface characterisation in micro-milling of monocrystalline silicon. Int J Adv Manuf Technol. 2015;81(5-8):1319-1331.

45

Dadgari A, Huo D, Swailes D. Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnol Precis Eng. 2018;1(4):218-225.

46

Huo D, Lin C, Dalgarno K. An experimental investigation on micro machining of fine-grained graphite. Int J Adv Manuf Technol. 2014;72 (5-8):943-953.

47
Kiswanto G, Johan YR, Poly, et al.. IOP Conf Ser Mater Sci Eng. 2019;654(1):012012.
48

Zhang Y, Yuan Z, Fang B, et al. Study on the mechanism of burr formation by simulation and experiment in ultrasonic vibration-assisted micromilling. Micromachines. 2023;14(3):625.

49

Ding H, Chen SJ, Ibrahim R, et al. Investigation of the size effect on burr formation in two-dimensional vibration-assisted micro end milling. P I Mech Eeg B-J Een. 2011;225(B11):2032-2039.

50

Zheng L, Chen W, Huo D. Investigation on the tool wear suppression mechanism in non-resonant vibration-assisted micro milling. Micromachines. 2020;11(4):380.

51

Greco S, Klauer K, Kirsch B, et al. Vibration-assisted micro milling of AISI 316L produced by laser-based powder bed fusion. J Manuf Process. 2021;71(June):298-305.

52
Greco S, Kirsch B, Aurich JC. Simulation and application of a piezodriven system enabling vibration-assisted micro milling. 2nd International Conference of the DFG International Research Training Group 2057 - Physical Modeling for Virtual Manufacturing. 2021; 89(3): 3: 1-3: 0.
53

Huan H, Xu W, Zhao B, et al. Simulation study of ultrasonic elliptical vibration cutting of TiC particle-reinforced titanium matrix composites. Metals (Basel). 2022;12(10):1-13.

54

Tan R,Zhao X,Sun T,et al. Experimental Investigation on microgroove manufacturing of Ti-6Al-4V alloy by using ultrasonic elliptical vibration assisted cutting. Materials (Basel). 2019;12(19):3086.

55

Chen X, Tang J, Shao W, et al. An analytical and experimental study on cutting characteristics and transient cutting force modeling in feed directional ultrasonic vibration-assisted cutting of high strength alloys. Materials (Basel). 2022;15(20).

56

Rinck PM, Gueray A, Zaeh MF. Modeling of cutting forces in 1-D and 2-D ultrasonic vibration-assisted milling of Ti-6Al-4V. Int J Adv Manuf Technol. 2022;119(3-4):1807-1819.

57

Jin X, Poudel A. 1712. Experimental study on high frequency chatter attenuation in 2-D vibration assisted micro milling process. J Vibroeng 2015;17(6):2743-2754.

58

Ma L, Howard I, Pang M, et al. Experimental investigation of cutting vibration during micro-end-milling of the straight groove. Micromachines. 2020;11(5):494.

59

Ding H, Chen SJ, Cheng K. Two-dimensional vibration-assisted micro end milling: Cutting force modelling and machining process dynamics. Proc Inst Mech Eng Part B J Eng Manuf. 2010; 224(12): 1775-1783.

60

Ding H, Chen SJ, Cheng K. Dynamic surface generation modeling of two-dimensional vibration-assisted micro-end-milling. Int J Adv Manuf Technol. 2011;53(9-12):1075-1079.

61

Shang P, Huang S, Liu X. Modeling and experimental study on cutting forces of 2D vibration assisted micro-milling. China Mech Eng. 2021; 32(6):648-657.

62

Rinck PM, Gueray A, Kleinwort R, et al. Experimental investigations on longitudinal-torsional vibration-assisted milling of Ti-6Al-4V. Int J Adv Manuf Technol. 2020;108(11-12):3607-3618.

63

Balázs BZ, Geier N, Takács M, et al. A review on micro-milling: recent advances and future trends. Int J Adv Manuf Technol. 2021;112(3-4):655-684.

64
Li P. Micromilling of hardened tool steels. mechanical maritime & materials engineering. 2009.
65

Dib MHM, Duduch JG, Jasinevicius RG. Minimum chip thickness determination by means of cutting force signal in micro endmilling. Precis Eng. 2018;51(August 2017):244-262.

66

Son SM, Lim HS, Ahn JH. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf. 2005;45(4-5):529-535.

67

Zhang Y, Zhang Q, Zhao J, et al. Ultrasonic vibration assisted milling of titanium alloy microchannel. Precis Eng. 2024;88:251-265.

68

Ding H, Chen S, Cheng K. Two dimensional vibration-assisted micromilling: kinematics simulation, chip thickness computation and analysis. Adv. Mater. Res 2010;(97-101):2779-2784.

69

Yi J, Liu X, Wang T, et al. Surface quality study of longitudinal torsional ultrasonic micro-milling of borosilicate glass based on morphological modeling. Int J Adv Manuf Technol 2024;133(1-2):183-198.

70

Ibrahim R, Rafai NH, Rahim EA, et al. A study of tool motion in 2 dimensional ultrasonic assisted micro-milling. Applied Mechanics & Materials. 2015;815:328-331.

71

Chen W, Zheng L, Huo D, et al. Surface texture formation by non-resonant vibration assisted micro milling. J Micromechanics Microengineering. 2018;28(2):025006.

72

Zheng L, Xie W, Huo D. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling. J of Materials Process Technol. 2019;266:339-350.

73

Zhang X, Yu T, Wang W. Dynamic cutting force prediction for micro end milling considering tool vibrations and run-out.P I Mech Eng C-J Mec 2019;233(7):2248-2261.

74

He J, Guo Z, Lian H, et al. Improving the machining quality of micro structures by using electrophoresis-assisted ultrasonic micromilling machining. Int J Precis Eng Manuf - Green Technol. 2020; 7(1): 151-161.

75
Sobamowo MG, Ojolo SJ, Olawale OK, et al. Force modeling and dynamic behaviour of multi-dimensional vibration assisted micro-end milling: Linear and nonlinear analyses. 2020;143(February): 224-261.
76

Yuan Z, Fang B, Dong Y, et al. Study on surface texture and corrosion resistance of ultrasonic vibration-assisted micromilling Inconel718. Int J Adv Manuf Technol. 2022;121(1-2):601-618.

77
Shang P, Yang Z, Zhang H, et al. Study on the mechanism of bone temperature diffusion in vibration-assisted micro milling. 2022 IEEE Int Conf Manip Manuf Meas Nanoscale. 2022;(August):349-354.
78

Yuan Z, Fang B, Zhang Y, et al. Effect of cutting parameters on chips and burrs formation with traditional micromilling and ultrasonic vibration assisted micromilling. Int J Adv Manuf Technol. 2022; 119(3-4): 2615-2628.

79

Su ZP, Liang ZQ, Li J, et al. Experimental research on ultrasonic spiral assisted milling and grinding of titanium alloy micro groove. Journal of Mechanical Engineering 2024;60(09): 5-12.

80

Aramcharoen A, Mativenga PT. Size effect and tool geometry in micromilling of tool steel. Precis Eng. 2009;33(4):402-407.

81

Balázs BZ, Takács M. Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel. Int J Adv Manuf Technol. 2020;106(11-12):5289-5305.

82

Fang B, Yuan Z, Li D, et al. Effect of ultrasonic vibration on finished quality in ultrasonic vibration assisted micromilling of Inconel718. Chinese J Aeronaut. 2021;34(6):209-219.

83

Kim GD, Loh BG. Characteristics of chip formation in micro V-grooving using elliptical vibration cutting. J Micromech Microeng. 2007;17 (8): 1458-1466.

84

Li G, Li YH, Liao QY, et al. Mechanism of dual-direction vibration-assisted (DVA) micro-milling in surface formation considering the tool life-lengthening effect on the Ti6Al4V: design and experiment. Int J Adv Manuf Technol. 2022;123(7-8):2313-2330.

85

Chen W, Zheng L, Teng X, et al. Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micromilling. Int J Adv Manuf Technol. 2019;105(11):4539-4549.

86

Gillespie LK. The formation and properties of machining burrs. Journal of Manufacturing Science & Engineering. 1976.

87

Aurich JC, Dornfeld D, Arrazola PJ, et al. Burrs-analysis, control and removal. CIRP Ann - Manuf Technol. 2009;58(2):519-542.

88

Hashimura M, Hassamontr J, Dornfeld DA. Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng Trans ASME. 1999;121(1):13-19.

89

Carlos L, Rosa P. Study of burr behavior in face milling of PH 13-8 Mo stainless steel. CIRP J Manuf Sci Tec. 2015;1:1-9.

90

Piquard R, D'Acunto A, Laheurte P, et al. Micro-end milling of NiTi biomedical alloys, burr formation and phase. Precis Eng . 2014; 38: 356-364.

91

O’Toole L, Kang CW, Fang FZ. Precision micro-milling process: state of the art. Adv Manuf. 2021;9(2):173-205.

92

Kai Y, Ba IQ, Fu YU, et al. Modeling and experimental analysis of the mechanism of micro-burr formation in micro-end-milling process. Nanotechnology and Precision Engineering. 2010;8(1):75-83.

93

Wan Y, Cheng K, Sun S. An innovative method for surface defects prevention in micro milling and its implementation perspectives. P I Mech Eng J-J Eng. 2013;227(12):1347-1355.

94

Xing Q, Gao M, Yao Z, et al. Research on ultrasonic vibration-assisted micro-EDM milling of microgrooves with large aspect ratio. Int J Adv Manuf Technol. 2023;128(3-4):1629-1639.

95

Li G, Wang B, Xue J, et al. Development of vibration-assisted micromilling device and effect of vibration parameters on surface quality and exit-burr. P I Mech Eng B-J Eng.2019;233(6):1723-1729.

96

Han G, Pan G, Wu W, et al. Research on the burr forming characteristics of ultrasonic assisted micro-milling process. Trans Beijing Inst Technol. 2018;38(9).

97

Ciftci I, Turker M, Seker U. Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des. 2004;25 (3):251-255.

98

Zhu D, Zhang X, Ding H. Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf. 2013;64:60-77.

99

Kuntoğlu M, Sağlam H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Meas J Int Meas Confed. 2019;140:427-436.

100

Lan TS, Chuang KC, Chen YM. Optimization of machining parameters using fuzzy Taguchi method for reducing tool wear. Appl Sci. 2018;8(7).

101

Oliaei SNB, Karpat Y. Influence of tool wear on machining forces and tool deflections during micro milling. Int J Adv Manuf Technol. 2016; 84(9-12):1963-1980.

102

Lv D. Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7. Int J Adv Manuf Technol. 2016;84(5-8):1443-1455.

103

Liu Y, Liu Z, Wang X, et al. Experimental study on tool wear in ultrasonic vibration-assisted milling of C/SiC composites. Int J Adv Manuf Technol. 2020;107(1-2):425-436.

104

Ding H, Ibrahim R, Cheng K, et al. Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling. Int J Mach Tools Manuf. 2010;50(12): 1115-1118.

105

Budinski KG. Tool wear in cutting plastic - abrasion or erosion? Wear. 1999;233-235:362-371.

106

Wang Z, Kovvuri V, Araujo A, et al. Built-up-edge effects on surface deterioration in micromilling processes. J Manuf Process. 2016; 24: 321-327.

107

Davoudinejad A, Tosello G, Annoni M. Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance: A 3D finite element modeling investigation. Int J Precis Eng Manuf. 2017;18(10):1321-1332.

108

Yuan Z, Dong Y, Ding H, et al. Study on surface quality and corrosion resistance of ultrasonic vibration assisted micromilling Inconel718. Int J Adv Manuf Technol. 2022;121(1-2):601-618.

109

Ibrahim MR, Rahim Z, Rahim E, et al. An Experimental investigation of cutting temperature and tool wear in 2 dimensional ultrasonic vibrations assisted micro-milling. MATEC Web Conf. 2017;95:07005.

110

Chen W, Teng X, Huo D, et al. An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol. 2017;93(9-12):3005-3016.

111

LIU X, WANG W, JIANG R, et al. Analytical model of cutting force in axial ultrasonic vibration-assisted milling in-situ TiB2/7050Al PRMMCs. Chinese J Aeronaut. 2021;34(4):160-173.

112

Verma GC, Pandey PM, Dixit US. Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening. Int J Mech Sci. 2018;136(December 2017):1-16.

113

Shen X, Zhang J, Yin T, et al. A study on cutting force in micro end milling with ultrasonic vibration. Adv Mater Res. 2010;97-101:1910-1914.

114

Kim GD, Loh BG. Machining of micro-channels and pyramid patterns using elliptical vibration cutting. Int J Adv Manuf Technol. 2010;49(9-12): 961-968.

115

Xu L, Liu Z, Han G, et al. Experimental study on ultrasonic assistant micro-milling of 45# steel under different grain size conditions. Trans Beijing Inst Technol. 2018;38(11):1105-1110.

116

Xu L, Chen Y, Han G, et al. Machinability research on the ultrasonic assisted micro-milling for graphene based aluminum matrix composite. Trans Beijing Inst Technol. 2022;41(8):894-900.

117
Hu H, Sun Y, Lu Z. Simulation and experiment of cutting force in ultrasonic torsional vibration assisted micro-milling. 5th Int Symp Adv Opt Manuf Test Technol Des Manuf Test Micro- Nano-Optical Devices Syst.
118
Parenti P, Park CI, Park SS, et al. Increasing stability of meso / micro milling cutting by means of ultrasonic vibration assisted machining piezo-electric actuators. Published online 2014: 8536.
119
Shang P, Liu X, Zhang H, et al. Research on cutting force of vibrationassisted micro-milling of bone materials. 2022 IEEE Int Conf Manip Manuf Meas Nanoscale, 3M-NANO 2022 - Proc. 2022.p.344-348.
120

Prabhu P. Investigations on piezo actuator-based nonresonant type workpiece vibratory system for vibration- assisted micro-milling. J Micromechanics Microengineering. 2023;35(8):657-672.

121

Wissmiller DL, Pfefferkorn FE. Technical paper: Micro end mill tool temperature measurement and prediction. J Manuf Process. 2009; 11 (1):45-53.

122

Mamedov A, Lazoglu I. Thermal analysis of micro milling titanium alloy Ti-6Al-4V. J Mater Process Technol. 2016;229(October 2015):659-667.

123

Yang K, Liang YC, Zheng KN, et al. Tool edge radius effect on cutting temperature in micro-end-milling process. Int J Adv Manuf Technol. 2011;52(9-12):905-912.

124

Elsadek AA, Gaafer AM, Mohamed SS, et al. Prediction and optimization of cutting temperature on hard-turning of AISI H13 hot work steel. SN Appl Sci. 2020;2(4):1-12.

125

Sun YJ, Gong H, Gui SY, et al. Towards understanding the cutting temperature in ultrasonic vibration-assisted drilling based on the dynamic contact characteristics between the cutting edge and workpiece. Ultrasonics. 2023;135(August):107131.

126

Liu X, Wang W, Jiang R, et al. Analytical model of workpiece temperature in axial ultrasonic vibration-assisted milling in situ TiB2/7050Al MMCs. Int J Adv Manuf Technol. 2022;119(3-4):1659-1672.

127

Chen L, Deng D, Pi G, et al. Burr formation and surface roughness characteristics in micro-milling of microchannels. Int J Adv Manuf Technol. 2020;111(5-6):1277-1290.

128

Biermann D, Steiner M. Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10. Procedia CIRP. 2012;3(1):97-102.

129

Uhlmann E, Piltz S, Schauer K. Micro milling of sintered tungstencopper composite materials. J Mater Process Technol. 2005;167(2-3): 402-407.

130

Serje D, Pacheco J, Diez E. Micromilling research: current trends and future prospects. Int J Adv Manuf Technol. 2020;111:1889-1916.

131

Li KM, Chou SY. Journal of materials processing technology experimental evaluation of minimum quantity lubrication in near micro-milling. J Mater Process Tech. 2010;210(15):2163-2170.

132

Shaw C. Energy conversion in cutting and grinding. CIRP Ann. 1996; 45(1):101-104.

133
Search H, Journals C, Contact A, et al. An investigation of cutting mechanics in 2 dimensional ultrasonic vibration assisted milling toward chip thickness and chip formation. 3rd International Conference of Mechanical Engineering Research. 2015;100: 012057.
134

Liu X, Wang W, Jiang R, et al. Investigation on surface roughness in axial ultrasonic vibration-assisted milling of in situ TiB2/7050Al MMCs. Int J Adv Manuf Technol. 2020;111(1-2):63-75.

135

Kiswanto G, Johan YR, Ko TJ. Machined surface roughness geometry model development on ultrasonic vibration assisted micromilling with end mill. Key Engineering Materials 2020;846(1):122-127.

136
Guo L, Fei D, Bo W, et al. Study on the micro-milling of optical microstructure with the assist of the workpiece vibration. 7th international Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-optical Devices and Systems. 2014;9283: 1-6.
137

Jin X, Xie B. Experimental study on surface generation in vibrationassisted micro-milling of glass. Int J Adv Manuf Technol. 2015;81(1-4):507-512.

138

Du Y, Song Q, Liu Z. Prediction of micro milling force and surface roughness considering size ‑ dependent vibration of micro ‑ end mill.Int J Adv Manuf Technol. 2022;119(9-10):5807-5820.

139

Hu HJ, Sun YZ, Lu ZS. Simulation of residual stress in ultrasonic vibration assisted micro-milling. Adv Mater Res. 2011;188:381-384.

140

Chen W, Huo D, Hale J, et al. Kinematics and tool-workpiece separation analysis of vibration assisted milling. Int J Mech Sci. 2018;136(July 2017):169-178.

141
Lu Z, Hu H, Sun, Y, et al. Study on residual stresses in Ultrasonic Torsional Vibration Assisted Micro-milling. 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-optical Devices and Systems. 2010;7657: 1-5.
142
Fritz K. Manufacturing processes. Springer Berlin Heidelberg. 2011
143

Milton CS, Cookson JO. Metal cutting principles. Tribology International. 1989;18(1):55.

144

Kim JS, Kim JW, Lee SW. Experimental characterization on microend milling of titanium alloy using nanofluid minimum quantity lubrication with chilly gas. Int J Adv Manuf Technol. 2017;91(5-8):2741-2749.

145

Sun J, Wong YS, Rahman M, et al. Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Mach Sci Technol. 2006;10(3):355-370.

146

Rahman M, Wang ZG, Wong YS. A Review on ultrasonic machining of titanium alloys. JSME Int Journal, Ser C Mech Syst Mach Elem Manuf. 2006;49(1):11-20.

147

Kumar Wagri N, Petare A, Agrawal A, et al. An overview of the machinability of alloy steel. Mater Today Proc. 2022;62:3771-3781.

148

Hafiz MSA, Kawaz MHA, Mohamad WNF, et al. A review on feasibility study of ultrasonic assisted machining on aircraft component manufacturing. IOP Conf Ser Mater Sci Eng. 2017;270(1).

149

Santos MC, Machado AR, Sales WF, Barrozo MAS, Ezugwu EO. Machining of aluminum alloys: a review. Int J Adv Manuf Technol. 2016; 86(9-12):3067-3080.

150

Dandekar CR, Shin YC. Modeling of machining of composite materials: A review. Int J Mach Tools Manuf. 2012;57:102-121.

151

Toulfatzis AI, Pantazopoulos GA, David CN, et al. Machinability of eco-friendly lead-free brass alloys: Cutting-force and surface-roughness optimization. Metals (Basel). 2018;8(4):1-18.

152

Kumar NS, Harsha P, Sudharshan N, et al. A Review on machining process of glass materials. Int J Res Eng Sci Manag. 2016;15(1): 17-19.

Journal of Advanced Manufacturing Science and Technology
Article number: 2025009
Cite this article:
ULLAH S, LIANG Z, DU Y, et al. Ultrasonic vibration-assisted micro-milling: A comprehensive review. Journal of Advanced Manufacturing Science and Technology, 2024, https://doi.org/10.51393/j.jamst.2025009

22

Views

2

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 22 January 2024
Revised: 15 March 2024
Accepted: 28 March 2024
Published: 03 September 2024
© 2025 JAMST

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return