AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access | Online First

Classifications, fabrications and applications of state-of-the-art hydrogels: A short review

Huangyi QUaYao YAObFarzam ALIMARDANIKHASLOUEIbYi WANGb( )Yi CAIa,c
Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
College of Engineering, University of Missouri, Columbia, MO 65211, USA
Dept of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
Show Author Information

Abstract

Hydrogels are a class of hydrophilic materials made of polymers cross-linked by physical entanglement or covalent bonds, capable of absorbing large amounts of water while remaining insoluble. Due to their excellent biocompatibility, tunable mechanical properties, and responsiveness, hydrogels hold significant potential for applications in biomedicine, agriculture, environmental protection, and industry. Despite this promise, current hydrogels still face several challenges in practical applications. This paper examines the development trends of hydrogels by reviewing their classification, preparation methods, and primary existing and potential applications in biomedicine, environmental protection, and industry, aiming to provide a reference for advancing hydrogel applications. This paper highlights that by continuously optimizing and innovating hydrogel materials and preparation processes, more novel and efficient applications can be achieved, fostering scientific and technological progress and social development.

References

1

Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev. 1993; 11(1):1-35.

2

Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. Chem Mater. 2020 ;32(22):9508-9530.

3

Yang Y, Wang J, Zhu J, et al. Rational design in functional hydrogels towards biotherapeutics. Mater Des. 2022;223:111086.

4

Bu W, Wang C, Xu L, et al. Rational design of hydrogels for immunomodulation. Regen Biomater. 2022;9:rbac009.

5

Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):e03719.

6

Li Y, Yang HY, Lee DS. Advances in biodegradable and injectable hydrogels for biomedical applications. J Control Release. 2021; 330:151-160.

7

Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater. 2021; 10(1):2001341

8

Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev. 2021;171:240-256.

9

Fei YH, Du XZ, Chen M, et al. Insight into adsorption process and mechanisms of Cr(Ⅲ) using carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide)/attapulgite composite hydrogel. Environ Technol. 2023;44(27):4173-4187

10

Tang R, He Z, Song Z, et al. Preparation of polyethylenimine and carboxymethyl cellulose co-modified magnetic bentonite for enhanced adsorption of Pb(Ⅱ) and Cd(Ⅱ) based on the concept of mesh bag and octopus-like tentacle. Cellulose. 2022;29(13):7225-7249.

11

Salahuddin B, Wang S, Sangian D, et al. Hybrid Gelatin Hydrogels in Nanomedicine Applications. ACS Appl Bio Mater. 2021; 4(4): 2886-2906.

12

Jo YJ, Kwon KY, Khan ZU, et al. Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl Mater Interfaces. 2018;10(45):39083-39090.

13

Tronci G, Thomas Neffe A, Franklin Pierce B, et al. An entropy-elastic gelatin-based hydrogel system. J Mater Chem. 2010; 20(40): 8875-8884.

14

Stubbe B, Mignon A, Van Damme L, et al. Photo-crosslinked gelatin-based hydrogel to support wound healing. Macromol Biosci. 2021;21 (12):2100246

15

Sun G, Zhang XZ, Chu CC. Formulation and characterization of chitosan-based hydrogel having both temperature and pH sensitivity. J Mater Sci Mater Med. 2007;18(8):1563-1577.

16

Nguyen NT, Liu JH. Fabrication and characterization of poly(vinyl alcohol)/chitosan hydrogel thin via UV irradiation. Eur Polym J. 2013;49 (12):4201-4211.

17

Shang J, Shao Z, Chen X. Chitosan-based electroactive hydrogel. Polymer. 2008;49(25):5520-5525.

18
Pereira R, Carvalho A, Vaz DC, et al. Development of novel alginate based hydrogel for wound healing applications. Int J Biol Macromol. 2013 Jan 1;52:221-230.
19

Ibrahim SF bt, Azam NANM, Amin KAM. Sodium alginate film: the effect of crosslinker on physical and mechanical properties. IOP Conf Ser Mater Sci Eng. 2019;509(1):012063.

20

Wang H, Liu J, Fan X, et al. Fabrication, characterisation, and application of green crosslinked sodium alginate hydrogel by natural crabshell powders to achieve drug sustained release. LWT. 2022; 171:114147.

21

Cheng Y, Lu J, Liu S, et al. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym. 2014;107:57-64.

22

Zainal SH, Mohd NH, Suhaili N, et al. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021;10:935-952.

23

Tovar-Carrillo KL, Tagaya M, Kobayashi T. Bamboo fibers elaborating cellulose hydrogel films for medical applications. J Mater Sci Chem Eng. 2013;1(7):7-12.

24

Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Controlled Release. 2000;69(1):169-184.

25

Graça MFP, Miguel SP, Cabral CSD, et al. Hyaluronic acid—Based wound dressings: A review. Carbohydr Polym. 2020;241:116364.

26

Ribeiro MP, Espiga A, Silva D, et al. Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen. 2009; 17(6):817-824.

27

Anjum S, Arora A, Alam MS, et al. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm. 2016; 508(1):92-101.

28

Zhao J, Qiu P, Wang Y, et al. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol. 2023; 244:125250.

29

Yao B, Ni C, Xiong C, et al. Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng. 2010;33(4):457-463.

30

Kurdtabar M, Rezanejade Bardajee G. Drug release and swelling behavior of magnetic iron oxide nanocomposite hydrogels based on poly (acrylic acid) grafted onto sodium alginate. Polym Bull. 2020; 77(6):3001-3015.

31

Shaikh MAJ, Gupta G, Afzal O, et al. Sodium alginate-based drug delivery for diabetes management: A review. Int J Biol Macromol. 2023; 236:123986.

32

Xu Q, Wu Z, Zhao W, et al. Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv Compos Hybrid Mater. 2023;6(6):203.

33

Zhang H, Qin L, Chen Y, et al. Silicone-enhanced polyvinyl alcohol hydrogels for high performance wearable strain sensors. Mater Des. 2023;229:111911.

34

Chau AL, Pugsley CD, Miyamoto ME, et al. pH-dependent friction of polyacrylamide hydrogels. Tribol Lett. 2023;71(4):108.

35

Ferreira LM de MC, Bandeira E de S, Gomes MF, et al. Polyacrylamide hydrogel containing calendula extract as a wound healing bandage: In vivo test. Int J Mol Sci. 2023;24(4):3806.

36
Sun S, Cui Y, Yuan B, et al. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol. 2023 Jan 30 [cited 2024 Jun 27];11.
37

Jia E, Lu H, Xu G, et al. Polyvinyl alcohol/polyethylene glycol composite hydrogel parceling on aluminum: Toward more robust microarc oxidation coatings. Ceram Int. 2023;49(8):13081-13091.

38

Han S, Yang H, Ni X, et al. Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol. 2023;253:126721.

39

Rahmani F, Atabaki R, Behrouzi S, et al. The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm. 2023;631:122484.

40

Vatanpour V, Teber OO, Mehrabi M, et al. Polyvinyl alcohol-based separation membranes: a comprehensive review on fabrication techniques, applications and future prospective. Mater Today Chem. 2023;28:101381.

41

Amiri S, Vatanpour V, He T. Antifouling thin-nanocomposite NF membrane with polyvinyl alcohol-sodium alginate-graphene oxide nanocomposite hydrogel coated layer for As(Ⅲ) removal. Chemosphere. 2023;322:138159.

42

Luo F, Chen B, Ran X, et al. Wearable and self-powered triboelectric sensors based on NaCl/PVA hydrogel for driver multidimensional information monitoring. Nano Energy. 2023;118:109035.

43

Wang Z, Ye Q, Yu S, et al. Poly Ethylene Glycol (PEG)-based hydrogels for drug delivery in cancer therapy: A comprehensive review. Adv Healthc Mater. 2023;12(18):2300105.

44

Wancura M, Nkansah A, Robinson A, et al. PEG-based hydrogel coatings: Design tools for biomedical applications. Ann Biomed Eng. 2024; 52(7):1804-1815.

45

Ouyang X, Huang C, Cheng S, et al. Microfluidic-based continuous fabrication of ultrathin hydrogel with controllable thickness. Polymers. 2023;15(13):2905.

46

Mrázek J, Sita J, Ondreáš F, et al. Homogeneous from amphiphilic hyaluronan and their characterization by confocal microscopy and nanoindentation. Carbohydr Polym. 2024;340:122331.

47

Soto-Bustamante F, Bassu G, Fratini E, et al. Effect of composition and freeze-thaw on the network structure, porosity and mechanical properties of polyvinyl-alcohol/chitosan hydrogels. Gels. 2023; 9(5):396.

48

Wu F, Gao J, Xiang Y, et al. Enhanced mechanical properties of PVA hydrogel by low-temperature segment self-assembly vs. freeze-thaw cycles. Polymers. 2023;15(18):3782.

49

Wang C, Yang B, Xiang R, et al. High-saline-enabled hydrophobic homogeneous cross-linking for extremely soft, tough, and stretchable conductive hydrogels as high-sensitive strain sensors. ACS Nano. 202; 17(22):23194-23206.

50

Yu G, Niu C, Liu J, et al. Preparation and properties of self-cross-linking hydrogels based on chitosan derivatives and oxidized sodium alginate. ACS Omega. 2023;8(22):19752-19766.

51

Shaker LM, Al-Azzawi WK, Al-Amiery A, et al. Highly transparent antibacterial hydrogel-polymeric contact lenses doped with silver nanoparticles. J Vinyl Addit Technol. 2023;29(6):1023-1035.

52

Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, et al. Self-lubricating, living contact lenses. Adv Mater. 2024; 36(27):e2313848.

53

Goregen İS, Ozay O. Use of polyvinyl alcohol-based cationic hydrogels modified with gold nanoparticles as drug and gene delivery systems with enhanced antibacterial properties. J Macromol Sci Part A. 2023;60(11):778-789.

54

Jafari Jezeh A, Entezam M, Haghiralsadat BF, et al. Liposomal Nanocarriers-Loaded Poly(vinyl alcohol) (PVA)/Poly(ethylene glycol) (PEG) Hydrogels: Physico-mechanical Properties and Drug Release. J Polym Environ. 2023;31(12):5110-5125.

55

Kumar N, Ghosh B, Kumar A, et al. Multilayered“SMART”hydrogel systems for on-site drug delivery applications. J Drug Deliv Sci Technol. 2023;80:104111.

56

Sedighi M, Shrestha N, Mahmoudi Z, et al. Multifunctional self-assem‐bled peptide hydrogels for biomedical applications. Polymers. 2023;15(5):1160.

57

Zhao Y, Li B, Chen X, et al. Liquid-liquid phase separation at double emulsion interfaces: equilibrium structures and dynamic pathways. Macromolecules. 2023;56(21):8834-8844.

58

Xu X, Maji S, Jerca VV, et al. Self-healing and shape-memory multiphase Thermoplastic elastomers based on electrostatic assembly of oppositely charged diblock copolymer assemblies. ACS Appl Polym Mater. 2024;6(3):1611-1621.

59

Cheng X, Li T, Yan L, et al. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation. Sci Adv. 2023;9(34): eadh8195.

60

Xu Y, Ajji A, Heuzey MC. Fast thermal responsive hydrogels consisting of electrospun fibers with highly tunable conductivity. Sens Actuators Phys. 2023;349:114016.

61

Wang X, Shen Y, Xu S, et al. Lignin in situ self-assembly facilitates biomimetic multiphase structure for fabricating ultra-strong and tough ionic conductors for wearable pressure and strain sensors. Adv Compos Hybrid Mater. 2023;6(3):84.

62

Xie Y, Gao S, Jian J, et al. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors. Int J Biol Macromol. 2023;227:462-471.

63

Li G, Chen J, Yan Z, et al. Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive performance. Mater Horiz. 2023;10(6):2004-2012.

64

Jiang J, Xu S, Ma H, et al. Photoresponsive hydrogel-based soft robot: A review. Mater Today Bio. 2023;20:100657.

65

Kong L, Zhao X, Liu S, et al. Advances in preparation, design strategy and application of electroactive hydrogels. J Power Sources. 2023;581:233485.

66

Goodrich R, Tai Y, Ye Z, et al. A magneto-responsive hydrogel system for the dynamic mechano-modulation of stem cell niche. Adv Funct Mater. 2023;33(12):2211288.

67

Ghalehkhondabi V, Fazlali A, Soleymani M. Temperature and pH-responsive PNIPAM@PAA Nanospheres with a Core-Shell Structure for Controlled Release of Doxorubicin in Breast Cancer Treatment. J Pharm Sci. 2023;112(7):1957-1966.

68

Hemmatpour H, Haddadi-Asl V, Burgers TCQ, et al. Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. Nanoscale. 2023;15(5):2402-2416

69

Shaibie NA, Ramli NA, Mohammad Faizal NDF, et al. Poly(N-isopropylacrylamide)-based polymers: recent overview for the development of temperature-responsive drug delivery and biomedical applications. Macromol Chem Phys. 2023;224(20):2300157.

70

Yang J, Tan Q, Li K, et al. Advances and trends of photoresponsive hydrogels for bone tissue engineering. ACS Biomater Sci Eng. 2024; 10 (4):1921-1945.

71

Jiang H. Photo-responsive materials for drug delivery system. Highlights Sci Eng Technol. 2024;91:360-365.

72

Kropacek J, Maslen C, Gidoni P, et al. Light-responsive hydrogel microcrawlers, powered and steered with spatially homogeneous illumination. Soft Robot. 2024;11(3):531-538.

73

Yang W, Wang X, Wang Z, et al. Light-powered microrobots: Recent progress and future challenges. Opt Lasers Eng. 2023;161:107380.

74

Wang Y, Yang X, Li L. Formation of pH-responsive hydrogel beads and their gel properties: Soybean protein nanofibers and sodium alginate. Carbohydr Polym. 2024;329:121748.

75

Cheng M, Cui Y, Guo Y, et al. Design of carboxymethyl chitosan-reinforced pH-responsive hydrogels for on-demand release of carvacrol and simulation of release kinetics. Food Chem. 2023;405:134856.

76

Su C, Li D, Wang L, et al. Green double crosslinked starch-alginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring. Chem Eng J. 2023;455:140653.

77

Bai L, Jin Y, Shang X, et al. Dual thermo-responsive multifunctional ionic conductive hydrogel by salt modulation strategy for multilevel encryption and visual monitoring. Chem Eng J. 2023;456:141082.

78

Wu T, Huang S, Feng X, et al. Visualizing drug release from a stimuliresponsive soft material based on amine-thiol displacement. ACS Appl Mater Interfaces. 2023;15(19):22967-22976.

79

Wang W, Harimurti S, Inoue D, et al. Janus membrane-based wearable pH sensor with sweat absorption, gas permeability, and self-adhesiveness. ACS Appl Mater Interfaces. 2024;16(21):27065-27074.

80

Lei Y, Gong Z, Li Y, et al. Highly sensitive physiological sensor based on tapered fiber-optic interferometer for sweat pH detection. IEEE Sens J. 2023;23(11):11627-11634.

81

Pourmadadi M, Farokh A, Rahmani E, et al. Polyacrylic acid mediated targeted drug delivery nano-systems: A review. J Drug Deliv Sci Technol. 2023;80:104169.

82

Li H, Dai C, Hu Y. Hydrogels for chemical sensing and biosensing. Macromol Rapid Commun. 2024;45(2):2300474.

83

Barhoum A, Sadak O, Ramirez IA, et al. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv Colloid Interface Sci. 2023;317:102920.

84

Kumar N, Gusain R, Pandey S, et al. Hydrogel nanocomposite adsorbents and photocatalysts for sustainable water purification. Adv Mater Interfaces. 2023;10(2):2201375.

85

Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, et al. Polymeric hydrogels-based materials for wastewater treatment. Chemosphere. 2023; 331:138743.

86

Takashima Y, Nakayama T, Miyauchi M, et al. Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem Lett. 2004;33(7):890-901.

87

Chen Q, Zhu L, Zhao C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater Deerfield Beach Fla. 2013; 25(30):4171-4176.

88

Jin C, Song W, Liu T, et al. Temperature and pH responsive hydrogels using methacrylated lignosulfonate cross-linker: synthesis, characterization, and properties. ACS Sustain Chem Eng. 2018;6(2):1763-1771.

89

Plumeré N, Rüdiger O, Oughli AA, et al. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat Chem. 2014;6(9):822-827.

90

Borbolla-Jiménez FV, Peña-Corona SI, Farah SJ, et al. Film for wound healing fabricated using a solvent casting technique. Pharmaceutics. 2023;15(7):1914.

91

Bauer M, Duerkop A, Baeumner AJ. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor’s applicability in real samples. Anal Bioanal Chem. 2023;415(1):83-95.

92

Gan Z, Qi R, Chen B, et al. Ultra-fast fabrication of MXene/PVA composite through glutaraldehyde induced microgel framework. Heliyon. 2024; 10(9):e30714.

93

Mugnaini G, Gelli R, Mori L, et al. How to cross-link gelatin: the effect of glutaraldehyde and glyceraldehyde on the hydrogel properties. ACS Appl Polym Mater. 2023;5(11):9192-9202.

94

Falcucci T, Radke M, Sahoo JK, et al. Multifunctional silk vinyl sulfone-based hydrogel scaffolds for dynamic material-cell interactions. Biomaterials. 2023;300:122201.

95

Ekrami S, Quilès F, Schollhammer A, et al. Exploring the mechanical and chemical properties of cross-linked poly(allylamine) -hyaluronic acid multilayer using a chemometric unmixing approach. ACS Appl Polym Mater. 2023;5(10):8533-8546.

96

Srikaew M, Jumpapaeng P, Suwanakood P, et al. Rapid synthesis and optimization of UV-photopolymerized cassava starch-based superabsorbent hydrogels as a biodegradable, low-cost, and effective adsorbent for MB removal. J Ind Eng Chem. 2023;118:53-69.

97

Xu Y, Ding B, Huang Z, et al. Deep ultraviolet hydrogel based on 2D cobalt-doped titanate. Light Sci Appl. 2023;12(1):1.

98

Sun J, Zhou L, Han P, et al. UV-initiated frontal polymerization for the fast synthesis of bubble-free, self-propagating hydrogel anticorrosive coatings. ACS Appl Mater Interfaces. 2023;15(23):28618-28625.

99

Demeter M, Scărișoreanu A, Călina I. State of the art of hydrogel wound dressings developed by ionizing radiation. Gels. 2023;9(1):55.

100

Thongnuek P, Kanokpanont S, Uttayarat P, et al. Hydrogelation of regenerated silk fibroin via gamma irradiation. Polymers. 2023; 15(18):3734.

101

Waresindo WX, Luthfianti HR, Priyanto A, et al. Freeze-thaw hydrogel fabrication method: basic principles, synthesis parameters, properties, and biomedical applications. Mater Res Express. 2023;10(2):024003.

102

Luthfianti HR, Waresindo WX, Edikresnha D, et al. Physicochemical characteristics and antibacterial activities of freeze-thawed polyvinyl alcohol/andrographolide hydrogels. ACS Omega. 2023; 8(3): 2915-2930.

103

Seidi F, Zhao W, Xiao H, et al. Layer-by-layer assembly for surface tethering of thin-hydrogel films: Design strategies and applications. Chem Rec. 2020;20(8):857-881.

104

Ivanov AS, Pershina LV, Nikolaev KG, et al. Recent progress of layerby-layer assembly, free-standing and hydrogel based on polyelectrolytes. Macromol Biosci. 2021;21(10):2100117.

105

Ghosh T, Das T, Purwar R. Review of electrospun hydrogel nanofiber system: Synthesis, Properties and Applications. Polym Eng Sci. 2021; 61(7):1887-1911.

106

Wakuda Y, Nishimoto S, Suye S, et al. Native collagen hydrogel nanofibres with anisotropic structure using core-shell electrospinning. Sci Rep. 2018;8(1):6248.

107

GhavamiNejad A, SamariKhalaj M, Aguilar LE, et al. pH/NIR lightcontrolled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy. Sci Rep. 2016; 6(1):33594.

108

Lv J, Fang Y, Wu M, et al. Poly(acrylamide) hydrogel composites with microsized β-chitin fiber and the properties of mechanical and drug release. Mater Today Commun. 2023;34:105163.

109

Qiao Z, Tran L, Parks J, et al. Highly stretchable gelatin-polyacrylamide hydrogel for potential transdermal drug release. Nano Sel. 2021;2(1):107-115.

110

Gulino EF, Citarrella MC, Maio A, et al. An innovative route to prepare in situ graded crosslinked PVA graphene electrospun mats for drug release. Compos Part Appl Sci Manuf. 2022;155:106827.

111

Song SW, Kim SD, Oh DY, et al. One-step generation of a drug-releasing hydrogel microarray-on-a-chip for large-scale sequential drug combination screening. Adv Sci. 2019;6(3):1801380.

112

Fan W, Zhang Z, Liu Y, et al. Shape memory polyacrylamide/gelatin hydrogel with controllable mechanical and drug release properties potential for wound dressing application. Polymer. 2021;226:123786.

113
Hua L, Qian H, Lei T, et al. Triggering drug release and thermal-disrupting interface induced mitigation of composite photothermal hydrogel treating infectious wounds. Front Bioeng Biotechnol. 2021 Dec 13 [cited 2024 Jul 1];9: 796602.
114

Moeini A, Pedram P, Makvandi P, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr Polym. 2020;233:115839.

115

Cui C, Sun S, Wu S, et al. Electrospun chitosan nanofibers for wound healing application. Eng Regen. 2021;2:82-90.

116

Loo HL, Goh BH, Lee LH, et al. Application of chitosan-based nanoparticles in skin wound healing. Asian J Pharm Sci. 2022; 17(3):299-332.

117

Li M, Liang Y, He J, et al. Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem Mater. 2020; 32(23):9937-9953.

118

Xu X, Ozden S, Bizmark N, et al. A bioinspired elastic hydrogel for solar-driven water purification. Adv Mater. 2021;33(18):2007833.

119

Zhu T, Liu B. Mechanism study on the effect of peracetic acid (PAA), UV/PAA and ultrasonic/PAA oxidation on ultrafiltration performance during algae-laden water treatment. Water Res. 2022;220:118705.

120

Cheng C, Li H, Wang J, et al. A review of measurement methods for peracetic acid (PAA). Front Environ Sci Eng. 2020;14(5):87.

121

Espinoza-Montero PJ, Montero-Jiménez M, Rojas-Quishpe S, et al. Nude and modified electrospun nanofibers, application to air purification. Nanomaterials. 2023;13(3):593.

122

Xie X, Zheng Z, Wang X, et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification. ACS Nano. 2021;15(1):1048-1058.

123

Mezel M, Alsous MB, Abbas B, et al. Multimode gradient-index fiber coated with a blend of PEG and PVP as a humidity sensor. Results Opt. 2024;16:100697.

124

Zhuang Z, Li Y, Li X, et al. A novel polymer-salt complex based on LiCl doped SPEEK/Poly(Ether Ether Ketone)-Co-Poly(Ethylene Glycol) for humidity sensors. IEEE Sens J. 2021;21(7):8886-8895.

125

Kordjazi S, Kamyab K, Hemmatinejad N. Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter. Adv Compos Hybrid Mater. 2020;3(2):167-176.

126

Zhang Z, He L, Zhu C, et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat Commun. 2020;11(1):875.

127

Mazzara F, Patella B, D’Agostino C, et al. PANI-Based wearable electrochemical sensor for pH sweat monitoring. Chemosensors. 2021; 9 (7):169.

128

Lu Y, Yang G, Wang S, et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron. 2024;7(1):51-65.

129

Dong H, Li X, Liu Y, et al. Ultra-flexible, breathable, and robust PAN/MWCNTs/PANI nanofiber networks for high-performance wearable gas sensor application. ACS Sens. 2024;9(6):3085-3095.

130

Chen Y, Zhang Y, Li H, et al. Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today. 2023;49:101764.

131

Won P, Kim KK, Kim H, et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv Mater. 2021;33 (19):2002397.

132

Fusi G, Del Giudice D, Skarsetz O, et al. Autonomous soft robots empowered by chemical reaction networks. Adv Mater. 2023; 35(7):2209870.

133

Lee YW, Chun S, Son D, et al. A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot. Adv Mater. 2022; 34(13):2109325.

Journal of Advanced Manufacturing Science and Technology
Article number: 2025013
Cite this article:
QU H, YAO Y, ALIMARDANIKHASLOUEI F, et al. Classifications, fabrications and applications of state-of-the-art hydrogels: A short review. Journal of Advanced Manufacturing Science and Technology, 2024, https://doi.org/10.51393/j.jamst.2025013

74

Views

10

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 05 August 2024
Revised: 20 August 2024
Accepted: 09 September 2024
Published: 26 September 2024
© 2025 JAMST

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0),which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return