AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Nanozymes with bioorthogonal reaction for intelligence nanorobots

Si Sun1Xinzhu Chen2Jing Chen1Junying Wang1Xiao-dong Zhang1,2( )
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

Abstract

Bioorthogonal reactions have attained great interest and achievements in various fields since its first appearance in 2003. Compared to traditional chemical reactions, bioorthogonal chemical reactions mediated by transition metals catalysts can occur under physiological conditions in the living system without interfering with or damaging other biochemical events happening simultaneously. The idea of using nanomachines to perform precise and specific tasks in living systems is regarded as the frontier in nanomedicine. Bioorthogonal chemical reactions and nanozymes have provided new potential and strategies for nanomachines used in biomedical fields such as drug release, imaging, and bioengineering. Nanomachines, also called as intelligence nanorobots, based on nanozymes with bioorthogonal reactions show better biocompatibility and water solubility in living systems and perform controlled and adjustable stimuli-triggered response regarding to different physiological environments. In this review, we review the definition and development of bioorthogonal chemical reactions and describe the basic principle of bioorthogonal nanozymes fabrication. We also review several controlled and adjustable stimuli-triggered intelligence nanorobots and their potential in therapeutic and engineered applications. Furthermore, we summarize the challenges in the use of intelligence nanorobots based on nanozymes with bioorthogonal chemical reactions and propose promising vision in smart nanodevices along this appealing avenue of research.

References

 

Adam C, Perez-Lopez AM, Hamilton L, Rubio-Ruiz B, Bray TL, Sieger D, Brennan PM, Unciti-Broceta A (2018) Bioorthogonal uncaging of the active metabolite of irinotecan by palladium-functionalized microdevices. Chemistry 24(63): 16783−16790

 

Anhauser L, Huwel S, Zobel T, Rentmeister A (2019) Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res 47(7): e42. https://doi.org/10.1093/nar/gkz084

 

Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44(9): 651−653

 

Bildstein L, Dubernet C, Couvreur P (2011) Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliver Rev 63(1-2): 3−23

 

Boyce M, Bertozzi CR (2011) Bringing chemistry to life. Nat Methods 8(8): 638−642

 

Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L (2019) Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24(10): 1991. https://doi.org/10.3390/molecules24101991

 

Cao-Milán R, Gopalakrishnan S, He LD, Huang R, Wang L-S, Castellanos L, Luther DC, Landis RF, Makabenta JMV, Li C-H, Zhang X, Scaletti F, Vachet RW, Rotello VM (2020) Thermally gated bio-orthogonal nanozymes with supramolecularly confined porphyrin catalysts for antimicrobial uses. Chem 6(5): 1113−1124

 

Carell T, Vrabel M (2016) Bioorthogonal chemistry-introduction and overview. Top Curr Chem 374(1): 9. https://doi.org/10.1007/s41061-016-0010-x

 

Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3(6): 321−322

 

Chatterjee A, Ward TR (2016) Recent advances in the palladium catalyzed Suzuki–Miyaura cross-coupling reaction in water. Catal Lett 146(4): 820−840

 

Chu Y, Oum YH, Carrico IS (2016) Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 487: 95−103

 

Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, Mullins JJ, Bradley M (2016) Copper catalysis in living systems and in situ drug synthesis. Angew Chem Int Ed 55(50): 15662−15666

 

Das R, Landis RF, Tonga GY, Cao-Milan R, Luther DC, Rotello VM (2019) Control of intra-versus extracellular bioorthogonal catalysis using surface-engineered nanozymes. ACS Nano 13(1): 229−235

 

Destito P, Sousa-Castillo A, Couceiro JR, López F, Mascareñas JL (2019) Hollow nanoreactors for Pd-catalyzed Suzuki−Miyaura couplings and O-propargyl cleavage reactions in bio-relevant aqueous media. Chem Sci 10(9): 2598−2603

 

Devaraj NK (2018) The future of bioorthogonal chemistry. ACS Cent Sci 4(8): 952−959

 

Dong YS, Tu YL, Wang KW, Xu C, Yuan Y, Wang J (2020) A general strategy for macrotheranostic prodrug activation: synergy between the acidic tumor microenvironment and bioorthogonal chemistry. Angew Chem Int Ed 59(18): 7168−7172

 

Eda S, Nasibullin I, Vong K, Kudo N, Yoshida M, Kurbangalieva A, Tanaka K (2019) Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat Catal 2(9): 780−792

 

Ellen M S (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44(9): 666−676

 

Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6): 2243−2245

 

Grammel M, Hang HC (2013) Chemical reporters for biological discovery. Nat Chem Biol 9(8): 475−484

 

Gupta A, Das R, Yesilbag Tonga G, Mizuhara T, Rotello VM (2018) Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12(1): 89−94

 

Hang HC, Yu C, Kato DL, Bertozzi CR (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci USA 100(25): 14846−14851

 

Hoop M, Ribeiro AS, Rösch D, Weinand P, Mendes N, Mushtaq F, Chen X-Z, Shen Y, Pujante CF, Puigmartí-Luis J, Paredes J, Nelson BJ, Pêgo AP, Pané S (2018) Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater 28(25): 1705920. https://doi.org/10.1002/adfm.201705920

 

Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537(7622): 661−665

 

Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B (2019) Click and release: bioorthogonal approaches to "on-demand" activation of prodrugs. Chem Soc Rev 48(4): 1077−1094

 

Jiang X, Wang R (2013) Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem Rev 113(7): 5515−5546

 

Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478): eaau6977. https://doi.org/10.1126/science.aau6977

 

Kenry, Liu B (2019) Bio-orthogonal click chemistry for in vivo bioimaging. Trends Chem 1(8): 763−778

 

Kim J, Bertozzi CR (2015) A bioorthogonal reaction of N-oxide and boron reagents. Angew Chem Int Ed 54(52): 15777−15781

 

Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114(9): 4764−4806

 

Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876): 664−667

 

Li B, Liu P, Wu H, Xie X, Chen Z, Zeng F, Wu S (2017) A bioorthogonal nanosystem for imaging and in vivo tumor inhibition. Biomaterials 138: 57−68

 

Li J, Chen PR (2016) Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12(3): 129−137

 

Li Z, Shen D, Hu S, Su T, Huang K, Liu F, Hou L, Cheng K (2018) Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano 12(12): 12193−12200

 

Lin YA, Chalker JM, Floyd N, Bernardes GJL, Davis BG (2008) Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J Am Chem Soc 130(30): 9642−9643

 

Ma Y, Wang M, Li W, Zhang Z, Zhang X, Tan T, Zhang XE, Cui Z (2017) Live cell imaging of single genomic loci with quantum dot-labeled TALEs. Nat Commun 8: 15318. https://doi.org/10.1038/ncomms15318

 

Munoz J, Heck AJ (2014) From the human genome to the human proteome. Angew Chem Int Ed 53(41): 10864−10866

 

Nagamune T (2017) Biomolecular engineering for nanobio/bionanotechnology. Nano Converg 4(1): 9. https://doi.org/10.1186/s40580-017-0103-4

 

Ngo AH, Bose S, Do LH (2018) Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chemistry 24(42): 10584−10594

 

Okamoto Y, Kojima R, Schwizer F, Bartolami E, Heinisch T, Matile S, Fussenegger M, Ward TR (2018) A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat Commun 9(1): 1943. https://doi.org/10.1038/s41467-018-04440-0

 

Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev 46(16): 4895−4950

 

Perez-Lopez AM, Rubio-Ruiz B, Sebastian V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd-Jones GC, Sieger D, Santamaria J, Unciti-Broceta A (2017) Gold-triggered uncaging chemistry in living systems. Angew Chem Int Ed 56(41): 12548−12552

 

Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1(1): 13−21

 

Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430(7002): 873−877

 

Ramil CP, Lin Q (2013) Bioorthogonal chemistry: strategies and recent developments. Chem Commun 49(94): 11007−11022

 

Rebelein JG, Ward TR (2018) In vivo catalyzed new-to-nature reactions. Curr Opin Biotechnol 53: 106−114

 

Ritter C, Nett N, Acevedo-Rocha CG, Lonsdale R, Kraling K, Dempwolff F, Hoebenreich S, Graumann PL, Reetz MT, Meggers E (2015) Bioorthogonal enzymatic activation of caged compounds. Angew Chem Int Ed 54(45): 13440−13443

 

Sancho-Albero M, Rubio-Ruiz B, Perez-Lopez AM, Sebastian V, Martin-Duque P, Arruebo M, Santamaria J, Unciti-Broceta A (2019) Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat Catal 2(10): 864−872

 

Sasmal PK, Streu CN, Meggers E (2013) Metal complex catalysis in living biological systems. Chem Commun 49(16): 1581−1587

 

Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460): 2007−2010

 

Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38): 6974−6998

 

Soto F, Wang J, Ahmed R, Demirci U (2020) Medical micro/nanorobots in precision medicine. Adv Sci . https://doi.org/10.1002/advs.202002203

 

Szponarski M, Schwizer F, Ward TR, Gademann K (2018) On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Communs Chem 1(84): 1−10

 

Taran F, Porte K, Renoux B, Peraudeau E, Clarhaut J, Eddhif B, Poinot P, Gravel E, Doris E, Wijkhuisen A (2019) Controlled release of micelle payload via sequential enzymatic and bioorthogonal reactions in living systems. Angew Chem Int Ed 58(19): 6366−6370

 

Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7(7): 597−603

 

Unciti-Broceta A (2015) Rise of the nanobots. Nat Chem 7(7): 538−539

 

Volker T, Meggers E (2015) Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol 25: 48−54

 
Vong K, Tanaka K (2020) In vivo metal catalysis in living biological systems. In: Tanaka K and Vong K (eds). Handbook of in vivo chemistry in mice: from lab to living system. Wiley-VCH Verlag GmbH & Co. KgaA, pp309-353. https://doi.org/10.1002/9783527344406.ch11
 

Wang F, Zhang Y, Du Z, Ren J, Qu X (2018) Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat Commun 9(1): 1209. https://doi.org/10.1038/s41467-018-03617-x

 

Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, Chen PR (2015) Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction. Angew Chem Int Ed 54(18): 5364−5368

 

Wang X, Liu Y, Fan X, Wang J, Ngai WSC, Zhang H, Li J, Zhang G, Lin J, Chen PR (2019) Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J Am Chem Soc 141(43): 17133−17141

 

Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sanchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A (2014a) Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem 57(12): 5395−5404

 

Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sanchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A (2014b) Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun 5: 3277. https://doi.org/10.1038/ncomms4277

 

Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4): 1004−1076

 

Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR (2009) Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci USA 106(9): 3000−3005

 

Xu L, Raabe M, Zegota MM, Nogueira JCF, Chudasama V, Kuan SL, Weil T (2020) Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org Biomol Chem 18(6): 1140−1147

 

Yan T, Li F, Qi S, Tian J, Tian R, Hou J, Luo Q, Dong Z, Xu J, Liu J (2020) Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix. Chem Commun 56(1): 149−152

 

Yao QX, Lin F, Fan XY, Wang Y, Liu Y, Liu Z, Jiang X, Chen PR, Gao Y (2018) Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat Commun 9(1): 5032. https://doi.org/10.1038/s41467-018-07490-6

 

Yarin (2010) Nanofibers, nanofluidics, nanoparticles and nanobots for drug and protein delivery systems. Sci Pharm 78(3): 542−542

 

Yusop RM, Unciti-Broceta A, Johansson EM, Sanchez-Martin RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3(3): 239−243

 

Zhang C, Zhou X, Yao T, Tian Z, Zhou D (2018) Precision fluorescent labeling of an adeno-associated virus vector to monitor the viral infection pathway. Biotechnol J 13(4): e1700374. https://doi.org/10.1002/biot.201700374

 

Zhang G, Zheng S, Liu H, Chen PR (2015) Illuminating biological processes through site-specific protein labeling. Chem Soc Rev 44(11): 3405−3417

 

Zhang X, Liu Y, Gopalakrishnan S, Castellanos-Garcia L, Li G, Malassine M, Uddin I, Huang R, Luther DC, Vachet RW, Rotello VM (2020) Intracellular activation of bioorthogonal nanozymes through endosomal proteolysis of the protein corona. ACS Nano 14(4): 4767−4773

 

Zheng M, Zheng L, Zhang P, Li J, Zhang Y (2015) Development of bioorthogonal reactions and their applications in bioconjugation. Molecules 20(2): 3190−3205

 

Zheng Y, Ji X, Yu B, Ji K, Gallo D, Csizmadia E, Zhu M, Choudhury MR, De La Cruz LKC, Chittavong V, Pan Z, Yuan Z, Otterbein LE, Wang B (2018) Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat Chem 10(7): 787−794

Biophysics Reports
Pages 8-20
Cite this article:
Sun S, Chen X, Chen J, et al. Nanozymes with bioorthogonal reaction for intelligence nanorobots. Biophysics Reports, 2021, 7(1): 8-20. https://doi.org/10.52601/bpr.2021.200044

485

Views

11

Downloads

0

Crossref

1

Scopus

0

CSCD

Altmetrics

Received: 07 September 2020
Accepted: 04 November 2020
Published: 20 April 2021
© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return