AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Review | Open Access

Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting

Chiran Ghimire1Peixuan Guo1( )
Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; College of Medicine; James Compréhensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
Show Author Information

Graphical Abstract

Abstract

Life science is often focused on the microscopic level. Single-molecule technology has been used to observe components at the micro- or nanoscale. Single-molecule imaging provides unprecedented information about the behavior of individual molecules in contrast to the information from ensemble methods that average the information of many molecules in various states. A typical feature of living systems is motion. The lack of synchronicity of motion biomachines in living systems makes it challenging to image the motion process with high resolution. Thus, single-molecule technology is especially useful for real-time study on motion mechanism of biomachines, such as viral DNA packaging motor, or other ATPases. The most common optical instrumentations in single-molecule studies are optical tweezers and single molecule total internal refection fluorescence microscopy (smTIRF). Optical tweezers are the force-based technique. The analysis of RNA using optical tweezer has led to the discovery of the rubbery or amoeba property of RNA nanoparticles for compelling vessel extravasation to enhance tumor targeting and fast renal excretion. The rubbery property of RNA lends mechanistic evidence for RNAs use as an ideal reagent in cancer treatment with undetectable toxicity. Single molecule photobleaching allows for the direct counting of biomolecules. This technique was invented for single molecule counting of RNA in the phi29 DNA packaging motor to resolve the debate between five and six copies of RNA in the motor. The technology has subsequently extended to counting components in biological machines composed of protein, DNA, and other macromolecules. In combination with statistical analysis, it reveals biomolecular mechanisms in detail and leads to the development of ultra-sensitive sensors in diagnosis and forensics. This review focuses on the applications of optical tweezers and fluorescence-based techniques as single-molecule technologies to resolve mechanistic questions related to RNA and DNA nanostructures.

References

 

Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5): 288−290

 

Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH (2005) Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 88(4): 2737−2744

 

Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130(2): 309−321

 

Agate B, Brown CTA, Sibbett W, Dholakia K (2004) Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt Express 12(13): 3011−3017

 

Amrute-Nayak M, Bullock SL (2012) Single-molecule assays reveal that RNA localization signals regulate dynein-dynactin copy number on individual transcript cargoes. Nat Cell Biol 14(4): 416−423

 

Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6(7): e22678. https://doi.org/10.1371/journal.pone.0022678

 

Arumugam SR, Lee T-H, Benkovic SJ (2009) Investigation of stoichiometry of T4 bacteriophage helicase loader protein (gp59). J Biol Chem 284(43): 29283−29289

 

Stephenson W, Wan G, Tenenbaum SA, Li PTX (2014) Nanomanipulation of single RNA molecules by optical tweezers. J Vis Exp (90): 51542. https://doi.org/10.3791/51542

 

Bock VD, Hiemstra H, van Maarseveen JH (2006) CuI-catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 2006(1): 51−68

 

Bockelmann U, Thomen P, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82(3): 1537−1553

 

Borodavka A, Tuma R, Stockley PG (2012) Evidence that viral RNAs have evolved for efficient, two-stage packaging. Proc Natl Acad Sci USA 109(39): 15769−15774

 

Bustamante C, Marko J, Siggia E, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265(5178): 1599−1600

 

Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148): 802−805

 

Chen X-C, Chen S-B, Dai J, Yuan J-H, Ou T-M, Huang Z-S, Tan J-H (2018) Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed Engl 57(17): 4702−4706

 

Cherny D, Gooding C, Eperon GE, Coelho MB, Bagshaw CR, Smith CWJ, Eperon IC (2010) Stoichiometry of a regulatory splicing complex revealed by single-molecule analyses. EMBO J 29(13): 2161−2172

 

Chou Y-Y, Vafabakhsh R, Doğanay S, Gao Q, Ha T, Palese P (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc Natl Acad Sci USA 109(23): 9101−9106

 

Chuang C-Y, Zammit M, Whitmore ML, Comstock MJ (2019) Combined high-resolution optical tweezers and multicolor single-molecule fluorescence with an automated single-molecule assembly line. J Phys Chem A 123(44): 9612−9620

 

Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40(1): 71−86

 

Churchman LS, Ökten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci USA 102(5): 1419−1423

 

Clemen AEM, Vilfan M, Jaud J, Zhang J, Bärmann M, Rief M (2005) Force-dependent stepping kinetics of myosin-V. Biophys J 88(6): 4402−4410

 

Cockroft SL, Chu J, Amorin M, Ghadiri MR (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 130(3): 818−820

 

Coffman VC, Wu J-Q (2012) Counting protein molecules using quantitative fluorescence microscopy. Trends Biochem Sci 37(11): 499−506

 

Coffman VC, Wu P, Parthun MR, Wu J-Q (2011) CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J Cell Biol 195(4): 563−572

 

Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8(4): 335−340

 

Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136(4): 604−609

 

Das SK, Darshi M, Cheley S, Wallace MI, Bayley H (2007) Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. ChemBioChem 8(9): 994−999

 

Dhakal S, Adendorff MR, Liu M, Yan H, Bathe M, Walter NG (2016) Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis. Nanoscale 8(5): 3125−3137

 

Ding H, Wong PT, Lee EL, Gafni A, Steel DG (2009) Determination of the oligomer size of amyloidogenic protein beta-amyloid(1-40) by single-molecule spectroscopy. Biophys J 97(3): 912−921

 

Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34(1): 221−243

 

Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J (2017) Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol 12(11): 1096−1102

 

Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105(41): 15755−15760

 

Duss O, Stepanyuk GA, Puglisi JD, Williamson JR (2019) Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179(6): 1357−1369

 

Enger J, Goksör M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4(3): 196−200

 

Fairman-Williams ME, Jankowsky E (2012) Unwinding initiation by the viral RNA helicase NPH-II. J Mol Biol 415(5): 819−832

 

Fallmann J, Will S, Engelhardt J, Grüning B, Backofen R, Stadler PF (2017) Recent advances in RNA folding. J Biotechnol 261: 97−104

 

Fang Y, Cai Q, Qin PZ (2005) The procapsid binding domain of ϕ29 packaging RNA has a modular architecture and requires 2'-hydroxyl groups in packaging RNA interaction. Biochemistry (Mosc) 44(26): 9348−9358

 

Fang Y, Shu D, Xiao F, Guo P, Qin PZ (2008) Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging. Biochem Biophys Res Commun 372(4): 589−594

 

Fricke F, Beaudouin J, Eils R, Heilemann M (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep 5(1): 14072. https://doi.org/10.1038/srep14072

 

Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86: 27−36

 

Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522): 555−559

 

Ghimire C, Park S, Iida K, Yangyuoru P, Otomo H, Yu Z, Nagasawa K, Sugiyama H, Mao H (2014) Direct quantification of loop interaction and π–π stacking for G-quadruplex stability at the submolecular level. J Am Chem Soc 136(44): 15537−15544

 

Ghimire C, Wang H, Li H, Vieweger M, Xu C, Guo P (2020) RNA nanoparticles as rubber for compelling vessel extravasation to enhance tumor targeting and for fast renal excretion to reduce toxicity. ACS Nano 14(10):13180−13191

 

Gibbs DR, Kaur A, Megalathan A, Sapkota K, Dhakal S (2018) Build your own microscope: step-by-step guide for building a prism-based TIRF microscope. Methods Protoc 1(4): 40. https://doi.org/10.3390/mps1040040

 

Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101(17): 6462−6465

 

Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA–protein interactions. Methods Enzymol 475: 427−453

 

Guo P, Noji H, Yengo CM, Zhao Z, Grainge I (2016) Biological nanomotors with a revolution, linear, or rotation motion mechanism. Microbiol Mol Biol Rev 80(1): 161−186

 

Guo P, Zhang C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage of Phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2(1): 149−155

 

Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63: 595−617

 

Haller A, Rieder U, Aigner M, Blanchard SC, Micura R (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7(6): 393−400

 

Hashemi Shabestari M, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG (2017) Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy. Methods Enzymol 582: 85−119

 

He X, Yin X, Wu J, Wickström SL, Duo Y, Du Q, Qin S, Yao S, Jing X, Hosaka K, Wu J, Jensen LD, Lundqvist A, Salter AI, Bräutigam L, Tao W, Chen Y, Kiessling R, Cao Y (2020) Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proc Natl Acad Sci USA 117(37): 22910−22919

 
Hermanson GT (2013) Chapter 2 − Functional targets for bioconjugation. In: Hermanson GT et al. (eds). Bioconjugate techniques (Third Edition). Boston: Academic Press. pp 127-228
 
Hess ST, Gould TJ, Gunewardene M, Bewersdorf J, Mason MD (2009) Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy. In: Foote RS and Lee JW et al. (eds). Micro and nano technologies in bioanalysis: methods and protocols. Totowa, NJ: Humana Press. pp 483-522
 

Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DMJ, Ha T (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318(5848): 279−283

 

Hua B, Panja S, Wang Y, Woodson SA, Ha T (2018) Mimicking co-transcriptional RNA folding using a superhelicase. J Am Chem Soc 140(32): 10067−10070

 

Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864): 810−813

 

Huang F, Wang G, Coleman T, Li N (2003) Synthesis of adenosine derivatives as transcription initiators and preparation of 5' fluorescein- and biotin-labeled RNA through one-step in vitro transcription. RNA 9(12): 1562−1570

 

Ibarra B, Castón JR, Llorca O, Valle M, Valpuesta JM, Carrascosa JL (2000) Topology of the components of the DNA packaging machinery in the phage ϕ29 prohead. J Mol Biol 298(5): 807−815

 

Jagannathan B, Marqusee S (2013) Protein folding and unfolding under force. Biopolymers 99(11): 860−869

 

Jasinski DL, Li H, Guo P (2018) The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther 26(3): 784−792

 

Jiang Y, Douglas NR, Conley NR, Miller EJ, Frydman J, Moerner WE (2011) Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution. Proc Natl Acad Sci USA 108(41): 16962−16967

 

Jonchhe S, Ghimire C, Cui Y, Sasaki S, McCool M, Park S, Iida K, Nagasawa K, Sugiyama H, Mao H (2019) Binding of a telomestatin derivative changes the mechanical anisotropy of a human telomeric G-quadruplex. Angew Chem Int Ed Engl 58(3): 877−881

 

Jülicher F, Bruinsma R (1998) Motion of RNA polymerase along DNA: a stochastic model. Biophys J 74(3): 1169−1185

 

Kaur A, Dhakal S (2020) Recent applications of FRET-based multiplexed techniques. Trends Analyt Chem 123: 115777. https://doi.org/10.1016/j.trac.2019.115777

 
Keller N, delToro DJ, Smith DE (2018) Single-molecule measurements of motor-driven viral DNA packaging in bacteriophages Phi29, Lambda, and T4 with optical tweezers. In: Lavelle C et al. (eds). Molecular motors: methods and protocols. New York: Springer New York. pp 393-422
 

Keyser UF, Does Jvd, Dekker C, Dekker NH (2006) Optical tweezers for force measurements on DNA in nanopores. Rev Sci Instrum 77(10): 105105. https://doi.org/10.1063/1.2358705

 
Keyser UF, van der Does J, Dekker C, Dekker NH (2009) Inserting and manipulating DNA in a nanopore with optical tweezers. In: Foote RS, Lee JW et al. (eds). Micro and nano technologies in bioanalysis: methods and protocols. Totowa, NJ: Humana Press. pp 95-112
 

Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15): 8206−8210

 

Knight AE, Mashanov G, Molloy JE (2005) Single molecule measurements and biological motors. Eur Biophys J 35(1): 89−89

 

Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3(10): 782−787

 

Kong L, Zhang P, Wang G, Yu J, Setlow P, Li Y-Q (2011) Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat Protoc 6(5): 625−639

 

Koyama-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS, Kusumi A (2005) Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys J 88(3): 2126−2136

 

Kudalkar EM, Davis TN, Asbury CL (2016) Single-molecule total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2016(5): pdb.top077800. https://doi.org/10.1101/pdb.top077800

 

Le M-T, Kasprzak WK, Kim T, Gao F, Young MYL, Yuan X, Shapiro BA, Seog J, Simon AE (2017) Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. ELife 6: e22883. https://doi.org/10.7554/eLife.22883

 

Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109): 355−358

 

Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci USA 109(43): 17436−17441

 

Lee TJ, Zhang H, Chang C-L, Savran C, Guo P (2009) Engineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies. Small 5(21): 2453−2459

 

Leulliot N, Varani G (2001) Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40(27): 7947−7956

 

Li N, Yu C, Huang F (2005) Novel cyanine-AMP conjugates for efficient 5' RNA fluorescent labeling by one-step transcription and replacement of [gamma-32P]ATP in RNA structural investigation. Nucleic Acids Res 33(4): e37. https://doi.org/10.1093/nar/gni036

 

Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12): 910−919

 

Liesener J, Reicherter M, Haist T, Tiziani HJ (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185(1): 77−82

 

Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1): 90−96

 

Liu Q, Xie Z, Qiu M, Shim I, Yang Y, Xie S, Yang Q, Wang D, Chen S, Fan T, Ding B, Guo Z, Adah D, Yao X, Zhang Y, Wu H, Wu Z, Wei C, Wang H, Kim HS, Zou Q, Yan Q, Cai Z, Kim JS, Liu L-P, Zhang H, Cao Y (2020) Prodrug-loaded zirconium carbide nanosheets as a novel biophotonic nanoplatform for effective treatment of cancer. Adv Sci 7(24): 2001191. https://doi.org/10.1002/advs.202001191

 

Liu Y, Sonek GJ, Berns MW, Konig K, Tromberg BJ (1995) Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. Opt Lett 20(21): 2246−2248

 

Ma G, Hu C, Li S, Gao X, Li H, Hu X (2019) Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. Nanotechnol Precis Eng 2(4): 145−156

 

Maier B (2005) Using laser tweezers to measure twitching motility in Neisseria. Curr Opin Microbiol 8(3): 344−349

 

Manosas M, Wen JD, Li PTX, Smith SB, Bustamante C, Tinoco I, Ritort F (2007) Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments. Biophys J 92(9): 3010−3021

 

Martin-Fernandez ML, Tynan CJ, Webb SED (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252(1): 16−22

 

McGuire H, Aurousseau MRP, Bowie D, Blunck R (2012) Automating single subunit counting of membrane proteins in mammalian cells. J Biol Chem 287(43): 35912−35921

 

Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M (2013) Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 4: 1997−1997

 

Mehta SB, McQuilken M, La Riviere PJ, Occhipinti P, Verma A, Oldenbourg R, Gladfelter AS, Tani T (2016) Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci USA 113(42): E6352−E6361

 

Michelotti N, de Silva C, Johnson-Buck AE, Manzo AJ, Walter NG (2010) A bird's eye view tracking slow nanometer-scale movements of single molecular nano-assemblies. Methods Enzymol 475: 121−148

 

Milstein JN, Chu M, Raghunathan K, Meiners J-C (2012) Two-color DNA nanoprobe of intracellular dynamics. Nano Lett 12(5): 2515−2519

 

Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8): 3597−3619

 

Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77(1): 205−228

 

Morais MC, Koti JS, Bowman VD, Reyes-Aldrete E, Anderson DL, Rossmann MG (2008) Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. Structure 16(8): 1267−1274

 

Murade CU, Subramaniam V, Otto C, Bennink ML (2009) Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy. Biophys J 97(3): 835−843

 

Myong S, Stevens BC, Ha T (2006) Bridging conformational dynamics and function using single-molecule spectroscopy. Structure 14(4): 633−643

 

Nambiar R, Gajraj A, Meiners J-C (2004) All-optical constant-force laser tweezers. Biophys J 87(3): 1972−1980

 

Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491−505

 

Newby Lambert M, Vöcker E, Blumberg S, Redemann S, Gajraj A, Meiners J-C, Walter NG (2006) Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy. Biophys J 90(10): 3672−3685

 

Nguyen HT, Hori N, Thirumalai D (2019) Theory and simulations for RNA folding in mixtures of monovalent and divalent cations. Proc Natl Acad Sci USA 116(42): 21022−21030

 

Nieminen TA, Knöner G, Heckenberg NR, Rubinsztein-Dunlop H (2007) Physics of optical tweezers. Methods Cell Biol 82: 207−236

 

Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79(4): 645−648

 

Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L, Liu Y, Kim JS, Cao Y, Tao W (2020) In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc Natl Acad Sci 117(46): 28667−28677

 

Paredes E, Evans M, Das SR (2011) RNA labeling, conjugation and ligation. Methods 54(2): 251−259

 

Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8): 2412−2417

 

Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci USA 100(6): 3173−3178

 

Qu X, Wu D, Mets L, Scherer NF (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci USA 101(31): 11298−11303

 

Rajoo S, Vallotton P, Onischenko E, Weis K (2018) Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc Natl Acad Sci USA 115(17): 3969−3977

 

Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3(11): 891−893

 

Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, Park S-R, Chu S, Tjian R (2012) Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 26(15): 1691−1702

 

Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6): 507−516

 

Rueda D, Walter NG (2005) Single molecule fluorescence control for nanotechnology. J Nanosci Nanotechnol 5(12): 1990−2000

 

Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10): 793−796

 

Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1): 72−84

 

Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8(2): 345−354

 

Shrestha P, Emura T, Koirala D, Cui Y, Hidaka K, Maximuck WJ, Endo M, Sugiyama H, Mao H (2016) Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores. Nucleic Acids Res 44(14): 6574−6582

 

Shu D, Zhang H, Jin J, Guo P (2007) Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J 26(2): 527−537

 

Shu Y, Cinier M, Fox SR, Ben-Johnathan N, Guo P (2011) Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Mol Ther 19(7): 1304−1311

 

Simonson PD, Deberg HA, Ge P, Alexander JK, Jeyifous O, Green WN, Selvin PR (2010) Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios. Biophys J 99(10): L81−L83

 

Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG (2000) Structure of the bacteriophage phi29 DNA packaging motor. Nature 408(6813): 745−750

 

Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120(1): 41−50

 

Sirinakis G, Ren Y, Gao Y, Xi Z, Zhang Y (2012) Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum 83(9): 093708. https://doi.org/10.1063/1.4752190

 

Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991): 533−538

 

Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235(1): 47−53

 

Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4): 319−321

 

Valero J, Pal N, Dhakal S, Walter NG, Famulok M (2018) A bio-hybrid DNA rotor–stator nanoengine that moves along predefined tracks. Nat Nanotechnol 13(6): 496−503

 

van Dijk MA, Kapitein LC, van Mameren J, Schmidt CF, Peterman EJG (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108(20): 6479−6484

 

Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72(3): 1335−1346

 

Wen J-D, Manosas M, Li PTX, Smith SB, Bustamante C, Ritort F, Tinoco I (2007) Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys J 92(9): 2996−3009

 

Whitley KD, Comstock MJ, Chemla YR (2017) High-resolution optical tweezers combined with single-molecule confocal microscopy. Methods Enzymol 582: 137−169

 

Williamson JR (2000) Induced fit in RNA–protein recognition. Nat Struct Biol 7(10): 834−837

 

Xiao F, Zhang H, Guo P (2008) Novel mechanism of hexamer ring assembly in protein/RNA interactions revealed by single molecule imaging. Nucleic Acids Res 36(20): 6620−6632

 

Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628): 2061−2065

 

Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38(7): 574−582

 

Yokota H, Chujo YA, Harada Y (2013) Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase. Biophys J 104(4): 924−933

 

Yu Z, Schonhoft JD, Dhakal S, Bajracharya R, Hegde R, Basu S, Mao H (2009) ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. J Am Chem Soc 131(5): 1876−1882

 

Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, Zhang X (2019) The mechanical properties of RNA-DNA hybrid duplex stretched by magnetic tweezers. Biophys J 116(2): 196−204

 

Zhang F, Anderson D (1998) In Vitro selection of bacteriophage ϕ29 prohead RNA aptamers for prohead binding. J Biol Chem 273(5): 2947−2953

 

Zhang H, Guo P (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67(2): 169−176

 

Zhang H, Shu D, Browne M, Guo P (2010a) Construction of a laser combiner for dual fluorescent single molecule imaging of pRNA of phi29 DNA packaging motor. Biomedical microdevices 12(1): 97−106

 

Zhang H, Shu D, Huang F, Guo P (2007) Instrumentation and metrology for single RNA counting in biological complexes or nanoparticles by a single-molecule dual-view system. RNA 13(10): 1793−1802

 

Zhang H, Shu D, Wang W, Guo P (2010b) Design and application of single fluorophore dual-view imaging system containing both the objective- and prism-type TIRF. Proc SPIE Int Soc Opt Eng 7571: 757107−757108

 

Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12): 906−918

 

Zhang X, Ma L, Zhang Y (2013) High-resolution optical tweezers for single-molecule manipulation. Yale J Biol Med 86(3): 367−383

 

Zhao Z, Khisamutdinov E, Schwartz C, Guo P (2013) Mechanism of one-way traffic of hexameric Phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS Nano 7(5): 4082−4092

 

Zhong M-C, Wei X-B, Zhou J-H, Wang Z-Q, Li Y-M (2013) Trapping red blood cells in living animals using optical tweezers. Nat Commun 4(1): 1768. https://doi.org/10.1038/ncomms2786

 

Zijlstra N, Blum C, Segers-Nolten IMJ, Claessens MMAE, Subramaniam V (2012) Molecular composition of sub-stoichiometrically labeled α-synuclein oligomers determined by single-molecule photobleaching. Angew Chem Int Ed Engl 51(35): 8821−8824

Biophysics Reports
Pages 449-474
Cite this article:
Ghimire C, Guo P. Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting. Biophysics Reports, 2021, 7(6): 449-474. https://doi.org/10.52601/bpr.2021.210003

389

Views

7

Downloads

5

Crossref

3

Scopus

2

CSCD

Altmetrics

Received: 07 February 2021
Accepted: 23 March 2021
Published: 07 July 2021
© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return