AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advancing biological super-resolution microscopy through deep learning: a brief review

Tianjie Yang1,2,3Yaoru Luo3,4Wei Ji1,2Ge Yang3,4( )
Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Biological super-resolution microscopy is a new generation of imaging techniques that overcome the ~200 nm diffraction limit of conventional light microscopy in spatial resolution. By providing novel spatial or spatiotemporal information on biological processes at nanometer resolution with molecular specificity, it plays an increasingly important role in biomedical sciences. However, its technical constraints also require trade-offs to balance its spatial resolution, temporal resolution, and light exposure of samples. Recently, deep learning has achieved breakthrough performance in many image processing and computer vision tasks. It has also shown great promise in pushing the performance envelope of biological super-resolution microscopy. In this brief review, we survey recent advances in using deep learning to enhance the performance of biological super-resolution microscopy, focusing primarily on computational reconstruction of super-resolution images. Related key technical challenges are discussed. Despite the challenges, deep learning is expected to play an important role in the development of biological super-resolution microscopy. We conclude with an outlook into the future of this new research area.

References

 

Anwar S, Khan S, Barnes N (2020) A deep journey into super-resolution: a Survey. ACM Comput Surv 53(3): 1−34

 

Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE T Pattern AnalMachIntell 39(12): 2481−2495

 

Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325): 606−612

 

Belthangady C, Royer LA (2019) Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat Methods 16(12): 1215−1225

 

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793): 1642−1645

 

Boulanger J, Kervrann C, Bouthemy P, Elbau P, Sibarita J, Salamero J (2010) Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE T Med Imaging 29(2): 442−454

 
Brown T, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D (2020) Language models are few-shot learners. https://arxiv.org/abs/2005.14165v4
 
Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. Proceedings of 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 2: 60-65. https://doi.org/10.1109/CVPR.2005.38
 

Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, Heng C, Becker T, Doan M, McQuin C, Rohban M, Singh S, Carpenter AE (2019) Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat Methods 16(12): 1247−1253

 

Chai X, Ba Q, Yang G (2018) Characterizing robustness and sensitivity of convolutional neural networks for quantitative analysis of mitochondrial morphology. Quant Biol 6(4): 344−358

 

Chen B, Gong W, Yang Z, Pan W, Verwilst P, Shin J, Yan W, Liu L, Qu J, Kim JS (2020) STORM imaging of mitochondrial dynamics using a vicinal-dithiol-proteins-targeted probe. Biomaterials 243: 119938

 
Cheng Y, Wang D, Zhou P, Zhang T (2017) A survey of model compression and acceleration for deep neural networks. https://arxiv.org/abs/1710.09282v9
 

Ciaparrone G, Luque Sánchez F, Tabik S, Troiano L, Tagliaferri R, Herrera F (2020) Deep learning in video multi-object tracking: a survey. Neurocomputing 381: 61−88

 

Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C, Mercer J, Henriques R (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15(4): 263−266

 
Dai J, Li Y, He K, Sun J (2016) R-FCN: Object detection via region-based fully convolutional networks. https://arxiv.org/abs/1605.06409v2
 

Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA 106(52): 22287−22292

 

Dong C, Loy CC, He KM, Tang XO (2016) Image super-resolution using deep convolutional networks. IEEE T Pattern AnalMachIntell 38(2): 295−307

 

Fang LJ, Monroe F, Novak SW, Kirk L, Schiavon CR, Yu SB, Zhang T, Wu M, Kastner K, Latif AA, Lin ZJ, Shaw A, Kubota Y, Mendenhall J, Zhang Z, Pekkurnaz G, Harris K, Howard J, Manor U (2021) Deep learning-based point-scanning super-resolution imaging. Nat Methods 18(4): 406−416

 

Farsiu S, Robinson D, Elad M, Milanfar P (2004) Advances and challenges in super-resolution. Int J Imaging Syst Technol 14(2): 47−57

 
Feng Y, Chai X, Ba Q, Yang G (2019) Quality assessment of synthetic fluorescence microscopy images for image segmentation. Proceedings of 2019 IEEE International Conference on Image Processing, pp. 814-818. https://doi.org/10.1109/ICIP.2019.8802971
 

Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X (2020) Deep learning in medical image registration: a review. Phys Med Biol 65(20): 20TR01

 

Gaire SK, Zhang Y, Li H, Yu R, Zhang HF, Ying L (2020) Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning. Biomed Opt Express 11(5): 2705−2721

 
Garcia-Garcia A, Orts S, Oprea S, Villena-Martinez V, Rodríguez J (2017) A review on deep learning techniques applied to semantic segmentation. https://arxiv.org/abs/1704.06857 a
 

Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771): 217−224

 
Girshick R (2015) Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp: 1440-1448. https://doi.org/10.1109/ICCV.2015.169
 
Girshick R, Donahue J, Darrell T, Malik (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp: 580-587. https://doi.org/10.1109/CVPR.2014.81
 

Gu L, Li Y, Zhang S, Xue Y, Li W, Li D, Xu T, Ji W (2019) Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 16(11): 1114−1118

 

Gu L, Li Y, Zhang S, Zhou M, Xue Y, Li W, Xu T, Ji W (2021) Molecular-scale axial localization by repetitive optical selective exposure. Nat Methods 18(4): 369−373

 

Gu L, Sheng Y, Chen Y, Chang H, Zhang Y, Lv P, Ji W, Xu T (2014) High-density 3D single molecular analysis based on compressed sensing. Biophys J 106(11): 2443−2449

 

Guo YT, Li D, Zhang SW, Yang YR, Liu JJ, Wang XY, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu JJ, Lippincott-Schwartz J, Betzig E, Li D (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175(5): 1430−1442

 

Gupta A, Harrison PJ, Wieslander H, Pielawski N, Kartasalo K, Partel G, Solorzano L, Suveer A, Klemm AH, Spjuth O, Sintorn I-M, Wählby C (2019) Deep learning in image cytometry: aReview. Cytometry A 95(4): 366−380

 

Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2): 82−87

 

Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7(1): 12471

 

Haskins G, Kruger U, Yan P (2020) Deep learning in medical image registration: a survey. Mach Vis Appl 31(1): 8

 
He F, Tao D (2020) Recent advances in deep learning theory. https://www.arxiv-vanity.com/papers/2012.10931/
 
He J, Deng Z, Zhou L, Wang Y, Qiao Y (2019) Adaptive pyramid context network for semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp: 7519-7528. https://doi.org/10.1109/CVPR.2019.00770
 
He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp: 2961-2969. https://doi.org/10.1109/ICCV.2017.322
 
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp: 770-778. https://doi.org/10.1109/CVPR.2016.90
 

Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11): 780−782

 

Hershko E, Weiss LE, Michaeli T, Shechtman Y (2019) Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt Express 27(5): 6158−6183

 

Hoffman DP, Slavitt I, Fitzpatrick CA (2021) The promise and peril of deep learning in microscopy. Nat Methods 18(2): 131−132

 

Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102(49): 17565−17569

 

Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird MA, Mothes W, Davidson MW, Toomre D, Bewersdorf J (2013) Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms. Nat Methods 10(7): 653−658

 
Jadon S (2020) A survey of loss functions for semantic segmentation. 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1-7. https://arxiv.org/abs/2006.14822
 

Jin L, Liu B, Zhao F, Hahn S, Dong B, Song R, Elston TC, Xu Y, Hahn KM (2020) Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat Commun 11(1): 1934

 

Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6): 499−505

 
Karhunen J, Raiko T, Cho K (2015) Chapter 7 - Unsupervised deep learning: ashort review. In: Bingham E, Kaski S, Laaksonen J and Lampinen J (eds). Advances in Independent Component Analysis and Learning Machines. Academic Press. pp 125-142
 
Khan S, Naseer M, Hayat M, Zamir SW, Khan F, Shah M (2021) Transformers in vision: a survey. https://export.arxiv.org/abs/2101.01169
 

Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15): 8206−8210

 
Kolesnikov A, Beyer L, Zhai X, Puigcerver J, Yung J, Gelly S, Houlsby N (2019) Big transfer (bit): general visual representation learning. https://arxiv.org/abs/1912.11370v3
 

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25: 1097−1105

 

Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG, Shroff H (2017) Assessing phototoxicity in live fluorescence imaging. Nat Methods 14(7): 657−661

 
Law H, Deng J (2018) Cornernet: Detecting objects as paired keypoints. Proceedings of the European Conference on Computer Vision (ECCV), pp: 734-750. https://doi.org/10.1007/s11263-019-01204-1
 

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553): 436−444

 
Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, Ng A (2011) On optimization methods for deep learning. Proceedings of the 2011 International Conference on Machine Learning, pp: 265-272. https://icml.cc/2011/papers/210_icmlpaper.pdf
 

Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6): 861−867

 

Li D, Shao L, Chen BC, Zhang X, Zhang MS, Moses B, Milkie DE, Beach JR, Hammer JA, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu PY, Betzig E (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251): aab3500

 

Li M, Shan H, Pryshchep S, Lopez MM, Wang G (2020) Deep adversarial network for super stimulated emission depletion imaging. J Nanophoton 14(1): 016009

 

Li P, Wang D, Wang L, Lu H (2018) Deep visual tracking: Review and experimental comparison. Pattern Recogn 76: 323−338

 

Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12): 910−919

 
Lim B, Son S, Kim H, Nah S, Lee KM (2017) Enhanced deep residual networks for single image super-resolution. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), pp. 1132−1140. https://doi.org/10.1109/CVPRW.2017.151
 
Lin D, Ji Y, Lischinski D, Cohen-Or D, Huang H (2018) Multi-scale context intertwining for semantic segmentation. Proceedings of the European Conference on Computer Vision (ECCV), pp: 603-619. https://doi.org/10.1007/978-3-030-01219-9_37
 
Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp: 2980-2988. https://doi.org/10.1109/ICCV.2017.324
 

Lin Y, Long JJ, Huang F, Duim WC, Kirschbaum S, Zhang Y, Schroeder LK, Rebane AA, Velasco MGM, Virrueta A, Moonan DW, Jiao J, Hernandez SY, Zhang Y, Bewersdorf J (2015) Quantifying and optimizing single-molecule switching nanoscopy at high speeds. PLoS One 10(5): e0128135

 

Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020) Deep learning for generic object detection: a survey. Int J Comput Vis 128(2): 261−318

 
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: Single shot multibox detector. Proceedings of the European Conference on Computer Vision (ECCV). Springer. pp: 21-37. https://doi.org/10.1007/978-3-319-46448-0_2
 
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. https://arxiv.org/abs/2103.14030v1?ref=hackernoon.com
 
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp: 3431-3440. https://doi.org/10.1109/TPAMI.2016.2572683
 

Luisier F, Blu T, Unser M (2011) Image denoising in mixed Poisson–Gaussian noise. IEEE T Image Process 20(3): 696−708

 
Lu Z, Pu H, Wang F, Hu Z, Wang L (2017) The expressive power of neural networks: a view from the width. Proceedings of International Conference on Neural Information Processing Systems (NIPS), pp: 6234-6240. https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
 

McCann MT, Jin KH, Unser M (2017) Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag 34(6): 85−95

 

Möckl L, Roy AR, Moerner WE (2020) Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments. Biomed Opt Express 11(3): 1633−1661

 

Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D (2019) Deep learning for cellular image analysis. Nat Methods 16(12): 1233−1246

 

Nehme E, Freedman D, Gordon R, Ferdman B, Weiss LE, Alalouf O, Naor T, Orange R, Michaeli T, Shechtman Y (2020) DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat Methods 17(7): 734−740

 

Nehme E, Weiss LE, Michaeli T, Shechtman Y (2018) Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5(4): 458−464

 

Ouyang W, Aristov A, Lelek M, Hao X, Zimmer C (2018) Deep learning massively accelerates super-resolution localization microscopy. Nat Biotechnol 36(5): 460−468

 

Ovesný M, Křížek P, Švindrych Z, Hagen GM (2014) High density 3D localization microscopy using sparse support recovery. Opt Express 22(25): 31263−31276

 

Qiao C, Li D, Guo Y, Liu C, Jiang T, Dai Q, Li D (2021) Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat Methods 18(2): 194−202

 
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp: 779-788. https://doi.org/10.1109/CVPR.2016.91
 

Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29(9): 2352−2449

 

Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MGL (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109(3): E135−E143

 
Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. https://arxiv.org/abs/1506.01497v1
 
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer. pp: 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
 

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3): 211−252

 

Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10): 793−795

 

Sage D, Pham T-A, Babcock H, Lukes T, Pengo T, Chao J, Velmurugan R, Herbert A, Agrawal A, Colabrese S, Wheeler A, Archetti A, Rieger B, Ober R, Hagen GM, Sibarita J-B, Ries J, Henriques R, Unser M, Holden S (2019) Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 16(5): 387−395

 

Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18(11): 685−701

 

Schmarje L, Santarossa M, Schröder SM, Koch R (2021) A survey on semi-, self- and unsupervised learning for image classification. IEEE Access 9: 82146−82168

 

Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1): 60

 

Sigal YM, Zhou R, Zhuang X (2018) Visualizing and discovering cellular structures with super-resolution microscopy. Science 361(6405): 880−887

 
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556v4
 
Sun R (2019) Optimization for deep learning: theory and algorithms. https://arxiv.org/abs/1912.08957v1
 
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp: 1-9. https://doi.org/10.1109/CVPR.2015.7298594
 
Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin C-W (2020) Deep learning on image denoising: an overview. Neural Netw 131: 251-275
 

Valli J, Garcia-Burgos A, Rooney LM, Vale de Melo e Oliveira B, Duncan RR, Rickman C (2021) Seeing beyond the limit: a guide to choosing the right super resolution microscopy technique. J Biol Chem 297(1): 100791

 

van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109(2): 373−440

 

van Ouwerkerk JD (2006) Image super-resolution survey. Image Vis Comput 24(10): 1039−1052

 

Wagner N, Beuttenmueller F, Norlin N, Gierten J, Boffi JC, Wittbrodt J, Weigert M, Hufnagel L, Prevedel R, Kreshuk A (2021) Deep learning-enhanced light-field imaging with continuous validation. Nat Methods 18(5): 557−563

 

Wang HD, Rivenson Y, Jin YY, Wei ZS, Gao R, Gunaydin H, Bentolila LA, Kural C, Ozcan A (2019a) Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods 16(1): 103−110

 

Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, Liu D, Mu Y, Tan M, Wang X (2020a) Deep high-resolution representation learning for visual recognition. IEEE T Pattern Anal Mach Intell

 

Wang Q, Ma Y, Zhao K, Tian Y (2020b) A comprehensive survey of loss functions in machine learning. Ann Data Sci

 

Wang Z, Chen J, Hoi SCH (2020c) Deep learning for image super-resolution: a survey. IEEE T Pattern Anal Mach Intell

 
Wang Z, She Q, Ward T (2019b) Generative adversarial networks: a survey and taxonomy. https://arxiv.org/abs/1906.01529v1
 

Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P, Royer L, Jug F, Myers EW (2018) Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15(12): 1090−1097

 
Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf Re, Funtowicz M, Brew J (2019) HuggingFace's transformers: state-of-the-art natural language processing. https://arxiv.org/abs/1910.03771
 

Wu Y, Rivenson Y, Wang H, Luo Y, Ben-David E, Bentolila LA, Pritz C, Ozcan A (2019) Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat Methods 16(12): 1323−1331

 

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE T Neural Netw Learn Syst 32: 4−24

 

Xing F, Xie Y, Su H, Liu F, Yang L (2018) Deep learning in microscopy image analysis: a survey. IEEE T Neural Netw Learn Syst 29: 4550−4568

 
Yang J, Huang T (2017) Image super-resolution: historical overview and future challenges. In: Milanfar P (eds). Super-resolution imaging. CRC Press. pp 1-33
 

Yang L, Shami A (2020) On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415: 295−316

 

Yang WM, Zhang XC, Tian YP, Wang W, Xue JH, Liao QM (2019) Deep learning for single image super-resolution: a brief review. IEEE T Multimedia 21(12): 3106−3121

 
Yu T, Zhu H (2020) Hyper-parameter optimization: a review of algorithms and applications. https://arxiv.org/abs/2003.05689
 

Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7): 1235−1270

 

Zelger P, Kaser K, Rossboth B, Velas L, Schütz GJ, Jesacher A (2018) Three-dimensional localization microscopy using deep learning. Opt Express 26(25): 33166−33179

 

Zhang P, Liu S, Chaurasia A, Ma D, Mlodzianoski MJ, Culurciello E, Huang F (2018) Analyzing complex single-molecule emission patterns with deep learning. Nat Methods 15(11): 913−916

 

Zhang Q-S, Zhu S-C (2018) Visual interpretability for deep learning: a survey. Front Inform Technol Electron Eng 19(1): 27−39

 
Zhang Y, Zhu Y, Nichols E, Wang Q, Zhang S, Smith CJ, Howard S (2019) A Poisson-Gaussian denoising dataset with real fluorescence microscopy images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11702-11710. https://doi.org.10.1109/CVPR.2019.01198
 
Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp: 2881-2890. https://doi.org/10.1109/CVPR.2017.660
 

Zhao Z, Zheng P, Xu S, Wu X (2019) Object detection with deep learning: a review. IEEE T Neural Netw Learn Syst 30(11): 3212−3232

 

Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: a review of methods and applications. AI Open 1: 57−81

Biophysics Reports
Pages 253-266
Cite this article:
Yang T, Luo Y, Ji W, et al. Advancing biological super-resolution microscopy through deep learning: a brief review. Biophysics Reports, 2021, 7(4): 253-266. https://doi.org/10.52601/bpr.2021.210019

394

Views

10

Downloads

6

Crossref

9

Scopus

1

CSCD

Altmetrics

Received: 20 June 2021
Accepted: 22 August 2021
Published: 17 September 2021
© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return